About

Diverse scientific fields and multidisciplinary expertise brought together within an international community

About SEGH

 

SEGH was established in 1971 to provide a forum for scientists from various disciplines to work together in understanding the interaction between the geochemical environment and the health of plants, animals, and humans.

SEGH recognizes the importance of interdisciplinary research, representing expertise in a diverse range of scientific fields, such as biology, engineering, geology, hydrology, epidemiology, chemistry, medicine, nutrition, and toxicology.

SEGH members come from a variety of backgrounds within the academic, regulatory, and industrial communities, thus providing a representative perspective on current issues and concerns.

SEGH membership is international and there are regional sections to coordinate activities in Europe, Americas and Asia/ Pacific.

 

 

 

Organisational Profile

 

President and Regional Chairs: President Dr Chaosheng Zhang

President European Chair Americas Chair Asia/Pacific Chair
Dr Chaosheng Zhang Dr Chaosheng Zhang Dr. Nurdan S. Duzgoren-Aydin, Prof. Kyoung-Woong Kim
University of Galway University of Galway

New Jersey City

University

 
Korea
chaosheng.zhang@nuigalway.ie     kwkim@gist.ac.kr



China-Ireland Consortium: Taicheng An (China), Yongguan Zhu (China) , Chaosheng Zhang (NUI Galway, Ireland)”

 

Organisational roles

Membership Secretary / Treasurer Secretary Webmaster
Mrs Anthea Brown Mr Malcolm Brown Dr Michael Watts
Rt. British Geological Survey Rt. British Geological Survey British Geological Survey
seghmembership@gmail.com segh.secretary@gmail.com seghwebmaster@gmail.com

 

SEGH is a member of the Geological Society of America's Associated Society Partnerships.  For more information on educational programmes, collaborations and communications link to www.geosociety.org.

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Assessment of radon concentration and heavy metal contamination in groundwater of Udhampur district, Jammu & Kashmir, India 2017-10-16

    Abstract

    Radon concentration was measured in water samples of 41 different locations from Udhampur district of Jammu & Kashmir, India, by using RAD7 and Smart RnDuo monitor. The variation of radon concentration in water ranged from 1.44 ± 0.31 to 63.64 ± 2.88 Bq L−1, with a mean value of 28.73 Bq L−1 using RAD7 and 0.64 ± 0.28 to 52.65 ± 2.50 Bq L−1, with a mean value of 20.30 Bq L−1 using Smart RnDuo monitor, respectively. About 17.07% of the studied water samples recorded to display elevated radon concentration above the reference range suggested by United Nation Scientific Committee on the Effects of Atomic Radiations (UNSCEAR). The mean annual effective dose of these samples was determined, and 78.95% samples were found to be within the safe limits set by World Health Organisation (WHO) and European Council (EU). The study revealed good agreement between the values obtained with two methods. Heavy metals (Zn, Cd, Fe, Cu, Ni, As, Hg, Co, Pb and Cr) were determined in water samples by microwave plasma atomic emission spectrometer, and their correlation with radon content was also analysed.

  • Detecting the effects of coal mining, acid rain, and natural gas extraction in Appalachian basin streams in Pennsylvania (USA) through analysis of barium and sulfate concentrations 2017-10-13

    Abstract

    To understand how extraction of different energy sources impacts water resources requires assessment of how water chemistry has changed in comparison with the background values of pristine streams. With such understanding, we can develop better water quality standards and ecological interpretations. However, determination of pristine background chemistry is difficult in areas with heavy human impact. To learn to do this, we compiled a master dataset of sulfate and barium concentrations ([SO4], [Ba]) in Pennsylvania (PA, USA) streams from publically available sources. These elements were chosen because they can represent contamination related to oil/gas and coal, respectively. We applied changepoint analysis (i.e., likelihood ratio test) to identify pristine streams, which we defined as streams with a low variability in concentrations as measured over years. From these pristine streams, we estimated the baseline concentrations for major bedrock types in PA. Overall, we found that 48,471 data values are available for [SO4] from 1904 to 2014 and 3243 data for [Ba] from 1963 to 2014. Statewide [SO4] baseline was estimated to be 15.8 ± 9.6 mg/L, but values range from 12.4 to 26.7 mg/L for different bedrock types. The statewide [Ba] baseline is 27.7 ± 10.6 µg/L and values range from 25.8 to 38.7 µg/L. Results show that most increases in [SO4] from the baseline occurred in areas with intensive coal mining activities, confirming previous studies. Sulfate inputs from acid rain were also documented. Slight increases in [Ba] since 2007 and higher [Ba] in areas with higher densities of gas wells when compared to other areas could document impacts from shale gas development, the prevalence of basin brines, or decreases in acid rain and its coupled effects on [Ba] related to barite solubility. The largest impacts on PA stream [Ba] and [SO4] are related to releases from coal mining or burning rather than oil and gas development.

  • Toxic effects of oxytetracycline and copper, separately or combined, on soil microbial biomasses 2017-10-12

    Abstract

    The production of commercial livestock and poultry often involves using with antibiotics and feed additives, such as oxytetracycline (OTC) and copper (Cu). These are often excreted into the soil by animal feces; hence, combined pollutants may contaminate the soil. To evaluate single and combined toxic effects of OTC and Cu on the soil ecology, changes in quantities of bacteria, fungi, and actinomycetes in the soil were studied over a 28-d incubation period by a plate count method, microbes numbers counted on days 7, 14, 21, and 28. Abundances of ammonia monooxygenase (amoA) gene expression by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in soil samples also were tested by real-time polymerase chain reactions (RT-PCRs) on day 21. The results revealed that the numbers of bacteria, fungi and actinomycetes and amoA genes copies of AOA and AOB were reduced seriously by exposure to Cu (1.60 mmol/kg). Similarly, the combined pollution treatments (mole ratios of OTC: Cu was 1:2, 1:8, and 1:32) also had inhibitory effect on bacteria, fungi, and actinomycetes numbers and amoA gene copies of AOA and AOB; the inhibitory rate was on obvious growth trend with the increasing mole ratios. Effects from single OTC pollution were found on bacteria (days 7 and 14), fungi (days 7, 14, 21, and 28), and AOA-amoA gene copies (day 21), with promotion at a low concentration (0.05 mmol/kg) and suppression at higher concentrations (0.2 and 0.8 mmol/kg). Also, numbers of bacteria, fungi, and actinomycetes decreased with longer culture times. Combining OTC and Cu led to a higher inhibition of soil microbes than when either chemical was used alone. However, there was no significant relationship between single and combined toxic chemicals because of their complicated interactions, either antagonistic or synergistic. The results also indicated the sensitivity of bacteria, fungi, actinomycetes on toxic chemicals existed difference and that the AOA were more tolerant than the AOB to these chemicals.