SEGH Articles

A pre-mining survey to establish the geochemical baseline in stream water and sediment of a mineralised area in north Greece

02 March 2012


One of the lessons learnt by the legacy of mining is that involvement of environmental scientists in the initial planning stages, in geochemistry baseline studies is significant for setting up realistic goals for monitoring and remediation programs.

A recent PhD project in the Department of Economic Geology and Geochemistry at the University of Athens, Greece investigated the geochemical characteristics of surface water and stream sediments of Asprolakkas drainage basin, an area of sulphide mineralization within metamorphic rocks, located in Chalkidiki peninsula, north Greece. One of the research objectives was to establish the geochemical baseline conditions prior to any type of new mining activity. The area represents the only example of active mining and processing of base metal sulphide ore in Greece and also includes an unmined porphyry Cu-Au ore deposit that will be exploited in the near future. In a wider context, this research represents a pre-mining baseline geochemical study that can be used as an analogue for similar metallogenetic provinces in areas with a Mediterranean type climate. The deposits of the area have a long exploitation history that started in 600 BC and continues until today, mainly because of their Au potential. It is believed that the mining activity in Chalkidiki during ancient times was the major source of gold during the era of Fillip II and Alexander the Great.

Concentrations of dissolved major ions and trace metals displayed wide variability within the study area. Kokkinolakkas, the stream draining the exploited Pb-Zn (±Ag) ore bodies, is strongly influenced by chemical weathering of sulphide minerals and presents elevated levels of SO4, Pb, Zn, Mn, Ni, Cd, As and Sb. Stream water of the unmined areas demonstrated a different chemical composition with elevated values mainly for Pb and As. It was found that hydrological conditions are important in modeling the element concentrations in water under present conditions. Major ion content decreases in the wet period as a result of dilution owing to the heavy winter rainfall. A contrasting behavior was observed for heavy metal composition in Kokkinolakkas water samples, due to the enhanced base metal dissolution under high run off conditions. It appears that downstream dispersion of metals is favoured by transport via adsorption processes onto very fine particles (< 0.45 μm). The study also revealed that weathering of the mineral deposits supports the occurrence of a prevalent Fe-Mn oxyhydroxide surface, which is considered to be capable of scavenging toxic metals. However, these precipitates could be a secondary source of trace metals for the water column upon dissolution of the oxides under reduced conditions. Cadmium is the only labile metal indicating the different chemical binding, and higher solubility of this element, compared to the other heavy metals. High actual concentrations were also measured in the carbonate fraction of Kokkinolakkas stream sediment samples, highlighting that pH is the principal variable governing the potential release of these elements to the dissolved phase.

Bearing in mind the ongoing mining developments in the area, results of this study are very significant, providing scientific data about the present environmental-geochemical baseline conditions of the drainage basin and are available for any future comparison. These data can enable mine planners to better anticipate and plan for potential environmental impacts and are useful for setting up realistic goals in monitoring and remediation programs.

Dr Ariadne Argyraki, Assistant Professor in Geochemistry, National and Kapodistrian University of Athens. E-mail: 

 Stream water sampling in Chalkidiki, Greece.


Kelepertzis, E., Argyraki, A., Daftsis, E (2012). Geochemical signature of surface water and stream sediments of a mineralized drainage basin at NE Chalkidiki, Greece: A pre-mining survey, Journal of Geochemical Exploration, 114, 70-81. (doi:10.1016/j.gexplo.2011.12.006)

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil 2017-04-19


    A 30-day incubation experiment was conducted using a heavy metal-contaminated mined soil amended with date palm feedstock (FS) and its derivative biochars (BCs) at three pyrolysis temperatures of 300 (BC-300), 500 (BC-500), and 700 °C (BC-700) with different application rates (0.0, 5, 15, and 30 g kg−1) to investigate their short-term effects on soil respiration (CO2–C efflux), microbial biomass carbon (MBC), soil organic carbon (SOC), mobile fraction of heavy metals (Cd, Cu, Pb, Zn, Mn, and Fe), pH, and electrical conductivity (EC). The results showed that FS and BC-300 with increasing addition rate significantly reduced soil pH, whereas SOC, CO2–C efflux, and soil MBC were increased compared to the control. On the contrary, BC-500 and BC-700 increased soil pH at early stage of incubation and have small or no effects on SOC, CO2–C efflux, and MBC. Based on the results, the date palm biochars exhibited much lower cumulative CO2–C efflux than feedstock, even with low-temperature biochar, indicating that BCs have C sequestration potential. Applying BC-700 at 15 and 30 g kg−1 significantly reduced cumulative CO2–C efflux by 21.8 and 45.4% compared to the control, respectively. The incorporation of FS into contaminated soil significantly increased the mobile content of Cd and Mn, but decreased the mobile content of Cu. However, BC-300 significantly reduced the mobile content of Cd, Cu, Pb, and Zn. It could be concluded that low-temperature biochar could be used as a soil amendment for reducing heavy metal mobility in mining contaminated soil in addition to minimize soil CO2–C efflux.

  • Historical record of anthropogenic polycyclic aromatic hydrocarbons in a lake sediment from the southern Tibetan Plateau 2017-04-17


    High-altitude lake sediments can be used as natural archives to reconstruct the history of pollutants. In this work, the temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was determined in a sediment core collected from the southern Tibetan Plateau (TP), which was dated by using the 210Pb dating method and validated with the 137Cs fallout peak. The concentrations of the anthropogenic PAHs (Σ8PAH) in the sediment core ranged from 0.83 to 12 ng/g dw, and the fluxes of the Σ8PAH were in the range of 2.1–27 g/cm2/year. The temporal variations in the concentration and input flux of anthropogenic PAHs were low with little variability before the 1950s, and then gradually increased from the 1950s to the 1980s, and an accelerated increase was observed after the early 1980s. The content of total organic carbon played an insignificant role in affecting the time trends of PAHs in the sediment core. Diagnostic concentration fractions of PAH components indicate PAHs in the lake sediment of the southern TP which are mainly from biomass burning and/or from long-range atmospheric transport.

  • Determination of the potential implementation impact of 2016 ministry of environmental protection generic assessment criteria for potentially contaminated sites in China 2017-04-12


    The Ministry of Environmental Protection of China issued a 3rd draft edition of risk-based Generic Assessment Criteria (the MEP-GAC) in March 2016. Since these will be the first authoritative GAC in China, their implementation is likely to have a significant impact on China’s growing contaminated land management sector. This study aims to determine the potential implementation impact of the MEP-GAC through an in-depth analysis of the management context, land use scenarios, health criteria values adopted and exposure pathways considered. The MEP-GAC have been proposed for two broad categories of land use scenarios for contaminated land risk assessment, and these two categories of land use scenarios need to be further delved, and a MEP-GAC for Chinese cultivated land scenario ought to be developed, to ensure human health protection of Chinese farmers. The MEP-GAC have adopted 10−6 as the acceptable lifetime cancer risk, given the widespread extent and severe level of land contamination in China, consideration should be given to the decision on excess lifetime cancer risk of 10−5. During risk assessment process in practice, it is better to review the 20% TDI against local circumstances to determine their suitability before adopting it. The MEP-GAC are based on a SOM value of 1%, for regions with particularly high SOM, it might be necessary to develop regional GAC, due to SOM’s significant impact on the GAC developed. An authoritative risk assessment model developed based on HJ25.3-2014 would help facilitate the DQRA process in practice. The MEP-GAC could better reflect the likely exposures of China’s citizens due to vapour inhalation by using characteristics of Chinese exposure scenarios, including China-generic building stock, as inputs into the Johnson and Ettinger model as opposed to adoption of the US EPA parameters. The MEP-GAC once implemented will set the trajectory for the development of the investigation, assessment and remediation of land contamination for years.