SEGH Articles

An historical reconstruction of atmospheric heavy metals deposition from a peat bog record on the North Shore of the St. Lawrence Estuary, Quebec

01 October 2013
Peat bogs were used to reconstruct the history of atmospheric heavy metal deposition along the St. Lawrence Valley. Results from one of the study sites were presented at the 29th SEGH held in July 2013, Toulouse.

Steve Pratte is currently a Ph.D. student at the Department of Earth and Atmospheric Sciences of Université du Québec à Montréal (UQAM, Canada) and the National Polytechnical Institute of Toulouse (INPT, France). The research presented at the 29th SEGH Conference in Toulouse won the Hemphill prize for best poster presentation in July.  The research was carried out during his Master’s degree in Earth and Planetary Sciences at McGill University in Montreal, under the supervision of Dr. Alfonso Mucci and Dr. Michelle Garneau.

Human activities, especially since the Industrial Revolution, have left a legacy of trace metal contamination that is potentially harmful for natural ecosystems and human health (e.g. As, Cd, Pb) and affected their geochemical cycles. Atmospheric metal pollution is recorded in different environmental archives such as lake and marine sediments, snow and ice and peat bogs. Among these archives, peat bogs have proven to be effective in reconstructing the history of atmospheric metal deposition throughout Europe, but few studies have been carried out in North America or in Quebec. Being an important natural wind corridor, oriented from south-west to north-east, the St. Lawrence Valley is affected by long-range transport of contaminants.

The present study focuses on the reconstruction of the history of atmospheric As, Cd, Ni, Pb and Zn deposition in surface cores (<100 cm) from three peat bogs along the St. Lawrence Valley (Fig.1). Core chronologies were established using 210Pb for the upper horizons and 14C dating for the deeper sections. Metal accumulation rates were computed from measured concentrations and core chronologies. Stable lead isotopes (204, 206, 207 and 208) were also analysed to distinguish natural and anthropogenic sources of Pb. Arsenic, cadmium, lead and stable lead isotopes results from one of the study sites (Baie bog) were presented at the 29th SEGH conference.

Metal accumulation rates (AR) and concentrations start increasing from the beginning to mid-19th century and increase more sharply from early 20th century. At the same time, Pb isotopic values diminish from 1850 AD probably from deposition of coal burning particle, and stabilise from the 1920’s likely due to contributions from leaded gasolines. Lead accumulations rates peak in 1951 AD, which is earlier than other studies undertaken in the region. Maximum Pb AR (24 mg m-2 yr-1) are in good agreement with other studies, while As and Cd AR are much lower than accumulation rates obtained in the southwestern part of the St. Lawrence Valley. This is likely explainable by the more remote location of the site which allow more particles to settle before reaching the site. This is also reflected in lead isotope values which fall closer to Canadian aerosols values, the site further away from the US Mid-west, receives proportionally more contributions from Canadian leaded gasolines. A sharp decrease in metal accumulation rates and concentrations from the mid-60’s and increase in Pb isotopic ratios from the mid-1970’s is observed, which reflect the phasing out of leaded gasoline and the implementation of other mitigation policies (i.e. Clean Air Act). However, values are still an order of magnitude higher than pre-industrial values and other less radiogenic sources of Pb must be invoked (likely coal consumption and smelting activities) to explain the recent decrease in isotopic values.

Study site locations

In short, the Baie bog recorded the main trends in industrial activities since the Industrial Revolution. The site receives more pollution from Canadian than US sources in reason of its greater distance from the main industrial and urban sources. Mitigation policies (phasing-out of leaded gasoline, Clean Air Act) have been effective in reducing metal emissions and deposition in the environment. Nevertheless, other sources than leaded gasolines are still contributing to Pb and other metal emissions.

Link to an article in Atmospheric Environment arising from this study.

Steve Pratte

Department of Earth and Atmospheric Sciences of Université du Québec à Montréal (UQAM, Canada) and the National Polytechnical Institute of Toulouse (INPT, France).

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Geophagy among East African Chimpanzees: consumed soils provide protection from plant secondary compounds and bioavailable iron 2019-12-01


    Geophagy, the intentional consumption of earth materials, has been recorded in humans and other animals. It has been hypothesized that geophagy is an adaptive behavior, and that clay minerals commonly found in eaten soil can provide protection from toxins and/or supplement micronutrients. To test these hypotheses, we monitored chimpanzee geophagy using camera traps in four permanent sites at the Budongo Forest Reserve, Uganda, from October 2015–October 2016. We also collected plants, and soil chimpanzees were observed eating. We analyzed 10 plant and 45 soil samples to characterize geophagic behavior and geophagic soil and determine (1) whether micronutrients are available from the soil under physiological conditions and if iron is bioavailable, (2) the concentration of phenolic compounds in plants, and (3) if consumed soils are able to adsorb these phenolics. Chimpanzees ate soil and drank clay-infused water containing 1:1 and 2:1 clay minerals and > 30% sand. Under physiological conditions, the soils released calcium, iron, and magnesium. In vitro Caco-2 experiments found that five times more iron was bioavailable from three of four soil samples found at the base of trees. Plant samples contained approximately 60 μg/mg gallic acid equivalent. Soil from one site contained 10 times more 2:1 clay minerals, which were better at removing phenolics present in their diet. We suggest that geophagy may provide bioavailable iron and protection from phenolics, which have increased in plants over the last 20 years. In summary, geophagy within the Sonso community is multifunctional and may be an important self-medicative behavior.

  • Accumulation of uranium and heavy metals in the soil–plant system in Xiazhuang uranium ore field, Guangdong Province, China 2019-12-01


    Plants that have grown for many years in the special environmental conditions prevailing in mining areas are naturally screened and show strong capacity to adapt to their environment. The present study investigated the enrichment characteristics of U and other heavy metals (As, Cu, Pb, Mn, Mo, Zn, Cd, Co, and Ni) in the soil–plant system in Xiazhuang uranium mine. Four dominant plants (Castanopsis carlesii, Rhus chinensis, Liriodendron chinense, and Sapium discolor) and soil samples were collected from the mined areas, unmined areas, and background areas away from the ore field. U, As, Cu, Pb, Mn, Mo, Zn, Cd, Co, and Ni concentrations were analyzed by ICP-MS. The results demonstrate that (1) The highest concentrations of U (4.1–206.9 mg/kg) and Pb (43.3–126.0 mg/kg) with the geoaccumulation index (Igeo) greater than 1 show that they are the main soil pollutants in the research area. (2) The biological accumulation coefficient (LBAC) values for Cd, Mn, and Cu are greater than zero in S. discolor, L. chinense, and C. carlesii and these three plants indicate that they can be used for remediation of the soil in the ore field. (3) R. chinensis inhibits the accumulation of heavy metals and shows sensitive pigment responses to the accumulation of U in the leaves. L. chinense has the strongest enrichment effect on heavy metals but exhibits weak biochemical responses under U stress. C. carlesii demonstrates strong adaptation to U and can maintain healthy pigment characteristics in case of high U enrichment. (4) S. discolor, L. chinense, C. carlesii and R. chinensis have strong tolerance to U toxicity and different biochemical responses.

  • Distribution, sources and health risk assessment of contaminations in water of urban park: A case study in Northeast China 2019-12-01


    This case study was performed to determine whether the pollutants in water of urban park could bring health risk to human engaging in water-related activities such as swimming and provide evidence demonstrating the critical need for strengthened recreational water resources management of urban park. TN, NH4+-N, TP, Cu, Mn, Zn, Se, Pb, As, Cd and Cr(VI) contents were determined to describe the spatial distribution of contaminations; sources apportionment with the method of correlation analysis, factor analysis and cluster analysis were followed by health risk assessment for swimmers of different age groups. The results reveal that element contents in all sites do not exceed Chinese standard for swimming area and European Commission standard for surface water; all detected elements except Cr(VI) have a tendency to accumulate in the location of lake crossing bridge; Mn and Zn are considered to have the same pollution source including geogenic and anthropogenic sources by multivariable analysis. Carcinogenic risks of different age groups descend in the same order with non-carcinogenic risks. Among all elements, Zn and Mn contribute the lowest non-carcinogenic risk (5.1940E-06) and the highest non-carcinogenic risk (7.9921E-04) through skin contact pathway, respectively. The total average personal risk for swimmers in swimming area is 1.9693E-03, and this site is not suitable for swimming. Overall, it is possible that swimmers are exposed to risk via the dermal route when carrying out water-related activities, it is recommended that necessary precautions and management should be taken in other similar locations around the world.