SEGH Articles

Application of geochemical signatures of shale in environmental pollution and human health assessment in South East Nigeria

15 June 2011
Therese Ntonzi Nganje describes her experience through a Commonwealth Scholarship scheme on connecting Nigerian and UK scientists.

This work contained activities during the period of my Commonwealth Scholarship Commission Fellowship (NGCF-2009-154) tenable held at the University of the West of Scotland October 2009- April 2010 under the supervision of Professor Andrew Hursthouse.

Areas underlain by shale rock in some parts of south-eastern Nigeria were investigated to ascertain the degree of environmental pollution by potential toxic trace element and the possible impact on human health.   A control area underlain by sandstone was also investigated as a known naturally low potentially toxic trace element area. Shales, especially the black variety, are natural geological sources of potentially toxic trace elements such as As, Cd, U, Mo, Cu, Ni, Hg among others, which are known to influence human health. The aim of this work was to primarily assess the effect of shale on the quality of the environment (soil, edible crop plants and water), evaluate the exposure pathways of the toxic trace elements and their implications on the health of humans. Samples of food, soil and drinking water were collected and transported under licence to the  

The water and soils and crop plants materials after the necessary treatment were digested with aqua regia in a hot block and were analyzed for both major and trace metals contents using Inductively Coupled Plasma Emission Spectrometry (ICP - OES) and Inductively Coupled Plasma Mass Spectrometry (ICP - MS) techniques. The anions in the water samples were determined by means of ion chromatography. Water physical parameters such as pH and conductivity were determined in-situ in the field. Also, soil parameters such as pH, total organic carton (TOC) as well as particle size were determined using standard methods.

The full results of the work are in various stages of preparation for publication and will include assessment to:

  • Allow comparison with existing global soil/plant/water data bases.
  • Establish the relationship between micronutrients and trace elements in soils and plants and possible implications to the health of humans in the area of study.
  • It is anticipated that this will provide a guide for policy analysis, environmental and health management decisions in the rapid urbanizing environment of Calabar and environs where my home University is located.

In addition, during my Fellowship, I was able to update and acquire new analytical skills and support to enable me to obtain a tenured position and scientific leadership in the area of Environmental Geochemistry at the University of Calabar (Nigeria). 


Activities included typical staff induction and orientation activities, advanced lecture courses in analytical techniques and measurement processes, seminars on environmental geochemistry - including iodine deficiency as well as research funding guidance. I also met many researchers, academics and technicians from Universities and regulatory organisations in the local area and had contact with other Commonwealth Fellows in the UK. I also had the opportunity to supervise UWS students in practical lab work.

All these activities were very relevant to my research at UWS as well as for my future career back in Nigeria as I am acquainted with the recent advances and analytical techniques in the area of environmental geochemistry and health of humans

My research stay in Scotland and UK has been very joyous, beneficial and successful as can be seen from the above report. The enabling environment to carry out this work to a successful completion was due to the receptive, friendly and accommodating people I met within and out of UWS.


I would like to thank Prof Andrew Hursthouse for accepting to host me, supervision and guidance, the University of the West of Scotland for access to facilities at the School of Science, the Commonwealth Scholarship Commission and British Council for funding and for their support prior to my visit and during the period of my fellowship and the authorities of the University of Calabar for the nomination and granting a study leave for me to take up the fellowship. The contributions of my head of department, Prof Aniekan Edet and colleague, Prof CS Okereke, SEGH and Dr Michael Watts of the British Geological Survey in UK for finding me a host institute are appreciated. The assistance provided in various aspects of the research work by Dr Simon Cuthbert, Dr John Hughes, Mr David Wallace, Mr Charlie McGuinnes, Ms Margaret Train and Natalie Dickson are also appreciated.

Finally my sincere and special thanks to Mr David Stirling for skills acquired and updated in the use of ICP-AES and ICP-MS and Mr Iain Mclellan for skills updated in the determination of some soil bulk parameters in soils.

Dr. Therese Ntonzi Nganje, University of Calabar, Nigeria

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Genotoxic effects of PM 10 and PM 2.5 bound metals: metal bioaccessibility, free radical generation, and role of iron 2018-10-09


    The present study was undertaken to examine the possible genotoxicity of ambient particulate matter (PM10 and PM2.5) in Pune city. In both size fractions of PM, Fe was found to be the dominant metal by concentration, contributing 22% and 30% to the total mass of metals in PM10 and PM2.5, respectively. The speciation of soluble Fe in PM10 and PM2.5 was investigated. The average fraction of Fe3+ and Fe2+ concentrations in PM2.5 was 80.6% and 19.3%, respectively, while in PM2.5 this fraction was 71.1% and 29.9%, respectively. The dominance of Fe(III) state in both PM fractions facilitates the generation of hydroxyl radicals (·OH), which can damage deoxyribose nucleic acid (DNA), as was evident from the gel electrophoresis study. The DNA damage by ·OH was supported through the in silico density functional theory (DFT) method. DFT results showed that C8 site of guanine (G)/adenine (A) and C6 site of thymine (T)/cytosine (C) would be energetically more favorable for the attack of hydroxyl radicals, when compared with the C4 and C5 sites. The non-standard Watson–Crick base pairing models of oxidative products of G, A, T and C yield lower-energy conformations than canonical dA:dT and dG:dC base pairing. This study may pave the way to understand the structural consequences of base-mediated oxidative lesions in DNA and its role in human diseases.

  • A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment 2018-10-08


    Airborne particulate matter (PM) that is a heterogeneous mixture of particles with a variety of chemical components and physical features acts as a potential risk to human health. The ability to pose health risk depends upon the size, concentration and chemical composition of the suspended particles. Potential toxic elements (PTEs) associated with PM have multiple sources of origin, and each source has the ability to generate multiple particulate PTEs. In urban areas, automobile, industrial emissions, construction and demolition activities are the major anthropogenic sources of pollution. Fine particles associated with PTEs have the ability to penetrate deep into respiratory system resulting in an increasing range of adverse health effects, at ever-lower concentrations. In-depth investigation of PTEs content and mode of occurrence in PM is important from both environmental and pathological point of view. Considering this air pollution risk, several studies had addressed the issues related to these pollutants in road and street dust, indicating high pollution level than the air quality guidelines. Observed from the literature, particulate PTEs pollution can lead to respiratory symptoms, cardiovascular problems, lungs cancer, reduced lungs function, asthma and severe case mortality. Due to the important role of PM and associated PTEs, detailed knowledge of their impacts on human health is of key importance.

  • Interactions between polycyclic aromatic hydrocarbons and epoxide hydrolase 1 play roles in asthma 2018-10-06


    Asthma, as one of the most common chronic diseases in children and adults, is a consequence of complex gene–environment interactions. Polycyclic aromatic hydrocarbons (PAHs), as a group of widespread environmental organic pollutants, are involved in the development, triggering and pathologic changes of asthma. Various previous studies reported the critical roles of PAHs in immune changes, oxidative stress and environment–gene interactions of asthma. EPHX1 (the gene of epoxide hydrolase 1, an enzyme mediating human PAH metabolism) had a possible association with asthma by influencing PAH metabolism. This review summarized that (1) the roles of PAHs in asthma—work as risk factors; (2) the possible mechanisms involved in PAH-related asthma—through immunologic and oxidative stress changes; (3) the interactions between PAHs and EPHX1 involved in asthma—enzymatic activity of epoxide hydrolase 1, which affected by EPHX1 genotypes/SNPs/diplotypes, could influence human PAH metabolism and people’s vulnerability to PAH exposure. This review provided a better understanding of the above interactions and underlying mechanisms for asthma which help to raise public’s concern on PAH control and develop strategies for individual asthma primary prevention.