SEGH Articles

Arsenic Biogeochemistry and Health

04 November 2014
The success of the 29th SEGH conference produced a special issue of papers presenting recent advances in various aspects of environmental and health impacts of contaminants, published in Environmental Geochemistry and Health


The 29th international Conference for Environmental Geochemistry and Health was held in Toulouse, France, from July 8th to 12th 2013 ( This annual meeting of the SEGH brought together 160 scientists from 35 countries to exchange ideas and results about regular topics (Biogeochemistry and Health, Biogeochemistry and Ecotoxicology, Spatial and Temporal Records of Pollution including Catchment Studies), as well as in Special Sessions (Frontiers in Mercury Biogeochemistry, Bioaccessibility of Pollutants in Soils and Vegetables, Arsenic: Current Issues of Speciation, Environmental Behaviour and Human Health Impacts). The participants had the occasion to present their work as well as learn from colleagues during three days of parallel sessions and outdoor poster sessions under the warm sun of Toulouse.

The success of this 29th event had several outcomes in the form of special issues. The first special issue was a collection of thirteen original papers presenting recent advances in various aspects of environmental and health impacts of contaminants, published in Environmental Geochemistry and Health, the SEGH Journal ( All the SEGH members have free access to this journal. A second special issue, published in Environmental Chemistry, grouped papers presented in one of the three special sessions, which was dealing with arsenic biogeochemistry and health, as well as the state of the art works in arsenic research (

We encourage the SEGH members to take a closer look at these two special issues as well as to participate in future SEGH events and submit papers to our journals!

On behalf of the 29th SEGH conference organising committee as well as the guest editors of these two special issues, we warmly thank all the contributors for their valuable inputs.

Francois De Vleeschouwer & Kevin Francesconi. 

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Status, source identification, and health risks of potentially toxic element concentrations in road dust in a medium-sized city in a developing country 2017-09-19


    This study aims to determine the status of potentially toxic element concentrations of road dust in a medium-sized city (Rawang, Malaysia). This study adopts source identification via enrichment factor, Pearson correlation analysis, and Fourier spectral analysis to identify sources of potentially toxic element concentrations in road dust in Rawang City, Malaysia. Health risk assessment was conducted to determine potential health risks (carcinogenic and non-carcinogenic risks) among adults and children via multiple pathways (i.e., ingestion, dermal contact, and inhalation). Mean of potentially toxic element concentrations were found in the order of Pb > Zn > Cr(IV) > Cu > Ni > Cd > As > Co. Source identification revealed that Cu, Cd, Pb, Zn, Ni, and Cr(IV) are associated with anthropogenic sources in industrial and highly populated areas in northern and southern Rawang, cement factories in southern Rawang, as well as the rapid development and population growth in northwestern Rawang, which have resulted in high traffic congestion. Cobalt, Fe, and As are related to geological background and lithologies in Rawang. Pathway orders for both carcinogenic and non-carcinogenic risks are ingestion, dermal contact, and inhalation, involving adults and children. Non-carcinogenic health risks in adults were attributed to Cr(IV), Pb, and Cd, whereas Cu, Cd, Cr(IV), Pb, and Zn were found to have non-carcinogenic health risks for children. Cd, Cr(IV), Pb, and As may induce carcinogenic risks in adults and children, and the total lifetime cancer risk values exceeded incremental lifetime.

  • Erratum to: Preliminary assessment of surface soil lead concentrations in Melbourne, Australia 2017-09-11
  • In vivo uptake of iodine from a Fucus serratus Linnaeus seaweed bath: does volatile iodine contribute? 2017-09-02


    Seaweed baths containing Fucus serratus Linnaeus are a rich source of iodine which has the potential to increase the urinary iodide concentration (UIC) of the bather. In this study, the range of total iodine concentration in seawater (22–105 µg L−1) and seaweed baths (808–13,734 µg L−1) was measured over 1 year. The seasonal trend shows minimum levels in summer (May–July) and maximum in winter (November–January). The bathwater pH was found to be acidic, average pH 5.9 ± 0.3. An in vivo study with 30 volunteers was undertaken to measure the UIC of 15 bathers immersed in the bath and 15 non-bathers sitting adjacent to the bath. Their UIC was analysed pre- and post-seaweed bath and corrected for creatinine concentration. The corrected UIC of the population shows an increase following the seaweed bath from a pre-treatment median of 76 µg L−1 to a post-treatment median of 95 µg L−1. The pre-treatment UIC for both groups did not indicate significant difference (p = 0.479); however, the post-treatment UIC for both did (p = 0.015) where the median bather test UIC was 86 µg L−1 and the non-bather UIC test was 105 µg L−1. Results indicate the bath has the potential to increase the UIC by a significant amount and that inhalation of volatile iodine is a more significant contributor to UIC than previously documented.