SEGH Articles

Arsenic hazard in rice from Kandal Province, Cambodia

08 September 2014
Peter Gilbert won the student prize at SEGH 2014 for best oral presentation.

After a somewhat uneventful 14 hr flight from Manchester, England I had landed in the capital of Cambodia, had my bags ruthlessly checked in front of two armed guards, had drivers practically fighting to give me a lift to my hotel, and travelled on the back of a moped though Phnom Penh’s rush hour traffic, a journey which at the time seemed like the most dangerous ride of my life. The reason we were here; to investigate arsenic concentrations within Cambodian rice, something which at the time of research initiation, had not previously been conducted.

We were to work closely with an NGO called RDIC (Resource Development International Cambodia) who use education and community based projects to implement safe drinking water in areas of high arsenic risk. With their help this study focused on Kandal Province, a region in the south of Cambodia where tube well As concentrations exceeded 3000 µg As/L. Use of contaminated waters for irrigation of rice paddies results in rice with elevated levels of As and given that rice forms 75% of the daily calorific intake in Cambodia it is likely a major source of exposure.

So we set to the task of collecting rice samples for As analysis. Clinging to the back of my translator’s moped and laden with samples of rice we travelled between four large markets in Kandal Province, collecting rice intended for direct human consumption. The origin and variety of rice was recorded totalling 19 different varieties sourcing from 7 provinces as well as Chinese, Vietnamese and Thai imports. After navigating customs with 15 kg of rice, samples were returned to Northumbria University where total As was determined by digestion with nitric acid followed by analysis by Inductively Coupled Mass Spectrometry (ICP-MS). Cambodian grown rice was found to be elevated in As with levels comparable to other As contaminated areas such as India and Bangladesh.

To gain a better understanding of the risk this posed to the local population the second key aspect of this study consisted of a food consumption survey in the village of Preak Russey, with the aim of determining rice and water consumption rates in order to assess absolute and relative contributions to the intake of As. Located four hours south of Phnom Penh and only reachable by ferry crossing Preak Russey is an extremely poor village with agricultural based livelihoods. When As was first identified in Cambodian tube well As concentrations in Preak Russey reached up to 3000 µg As/L with 13% of the population having documented arsenicosis. Two weeks were spent in the village conducting food and water consumption surveys for 20 households through interviews with a translator. Rice was typically eaten three times a day, typically with vegetables or fish with only wealthier households affording a more varied diet containing noodles or meat.

Due to the high consumption of rice and their elevated levels of As it was found that the daily exposure to As through rice would be greater than drinking 2 L of water at the WHO recommended limit of 10 µg As/L. Equally when As ingestion is calculated from both water and rice combined the daily consumption of As breaches the limits beyond which genotoxic effects occur. This study highlights As in rice as a significant environmental hazard in Cambodia and provides a base for further research.

Peter Gilbert ( Department of Geography, Northumbria University, England

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Review: mine tailings in an African tropical environment—mechanisms for the bioavailability of heavy metals in soils 2019-05-27


    Heavy metals are of environmental significance due to their effect on human health and the ecosystem. One of the major exposure pathways of Heavy metals for humans is through food crops. It is postulated in the literature that when crops are grown in soils which have excessive concentrations of heavy metals, they may absorb elevated levels of these elements thereby endangering consumers. However, due to land scarcity, especially in urban areas of Africa, potentially contaminated land around industrial dumps such as tailings is cultivated with food crops. The lack of regulation for land-usage on or near to mine tailings has not helped this situation. Moreover, most countries in tropical Africa have not defined guideline values for heavy metals in soils for various land uses, and even where such limits exist, they are based on total soil concentrations. However, the risk of uptake of heavy metals by crops or any soil organisms is determined by the bioavailable portion and not the total soil concentration. Therefore, defining bioavailable levels of heavy metals becomes very important in HM risk assessment, but methods used must be specific for particular soil types depending on the dominant sorption phases. Geochemical speciation modelling has proved to be a valuable tool in risk assessment of heavy metal-contaminated soils. Among the notable ones is WHAM (Windermere Humic Aqueous Model). But just like most other geochemical models, it was developed and adapted on temperate soils, and because major controlling variables in soils such as SOM, temperature, redox potential and mineralogy differ between temperate and tropical soils, its predictions on tropical soils may be poor. Validation and adaptation of such models for tropical soils are thus imperative before such they can be used. The latest versions (VI and VII) of WHAM are among the few that consider binding to all major binding phases. WHAM VI and VII are assemblages of three sub-models which describe binding to organic matter, (hydr)oxides of Fe, Al and Mn and clays. They predict free ion concentration, total dissolved ion concentration and organic and inorganic metal ion complexes, in soils, which are all important components for bioavailability and leaching to groundwater ways. Both WHAM VI and VII have been applied in a good number of soils studies with reported promising results. However, all these studies have been on temperate soils and have not been tried on any typical tropical soils. Nonetheless, since WHAM VII considers binding to all major binding phases, including those which are dominant in tropical soils, it would be a valuable tool in risk assessment of heavy metals in tropical soils. A discussion of the contamination of soils with heavy metals, their subsequent bioavailability to crops that are grown in these soils and the methods used to determine various bioavailable phases of heavy metals are presented in this review, with an emphasis on prospective modelling techniques for tropical soils.

  • Pesticides in the typical agricultural groundwater in Songnen plain, northeast China: occurrence, spatial distribution and health risks 2019-05-25


    Songnen plain is an important commodity grain base of China, and this is the first study on the comprehensive detection of multiple pesticides in groundwater. Based on an analytical method of 56 pesticides, 30 groundwater samples were collected and analyzed. At least 4 pesticides were detected in each sample and 32 out of 56 pesticides were detected. The average detected levels of individual pesticides were approximately 10–100 ng/L. Organophosphorus pesticides and carbamate pesticides were the dominant pesticides, and their percentage of total pesticide concentrations were 35.9% and 55.5%, respectively. Based on the spatial distribution, the characteristic of nonpoint source pollution was indicated in the whole study area except for a point source pollution with the influence of a sewage oxidation pond. Nine core pesticides and three distinct clusters of the core pesticides with various concentration patterns were revealed by cluster analysis. Linear regression identified a significant relationship between the cumulative detections and the cumulative concentrations, providing access to identify the outlying contaminant events that deviate substantially from the linear trend. A new insight for prediction of pesticide occurrence was provided by the Pearson correlation between some individual pesticide concentrations and the cumulative detections or the cumulative concentrations. According to health risk assessment, the residual pesticides posed medium risks for children and infants and approximately 90% of risks were composed of β-HCH, dimethoate, ethyl-p-nitrophenyl phenylphosphonothioate and methyl parathion. These findings contributed to establishing a database for future monitoring and control of pesticides in agricultural areas.

  • Correction to: Potential CO 2 intrusion in near-surface environments: a review of current research approaches to geochemical processes 2019-05-22

    In the original publication of the article, the third author name has been misspelt. The correct name is given in this correction. The original version of this article was revised.