SEGH Articles

Back to the Future: Brian E Davies (Past President)

08 April 2014
Should we reduce our emphasis on the toxic elements? Is it time to go back to the future?

 

 

In 1970, when SEGH began, we talked about many ideas: is aluminium involved in dementia?; is arsenic an essential element?; is chromium involved in Type 2 diabetes?; can the incidence of gastric cancer be related to copper and zinc in the environment? By 1982, when I organised SEGH, and its first conference, in Britain, priorities had changed to environmental metals and sometimes we now appear to be a pollution society.

 

Have we reached the end of the metals era? For example, lead. The danger to child mental development has been recognised and quantified: the role of hand dirt is understood, paint and petrol are lead free, government regulations are in place, the environmental chemistry of lead is broadly understood. New ideas are now more likely to come from the clinical rather than the earth sciences. Or, cadmium. Little epidemiological evidence has emerged that environmental cadmium is a significant health problem. The special problems in Asia are probably because of poor iron nutrition (Simmons et al., 2003).

 

Death from all causes in 2012 (England and Wales) was 489,274. Accidental poisoning by ‘noxious substances’ accounted for 1,416 (0.3%) in contrast with 8,367 (1.7%) alcohol related deaths. Malignant neoplasms and diseases of the circulatory system each represented 28.8% total deaths. Morbidity data are broadly similar.

 

 

For cardiovascular diseases magnesium is a cofactor for over 300 enzyme systems and is required for energy generation and glycolysis. Magnesium is involved in nerve conduction, muscle contraction, potassium transport, and calcium channels. An environmental geochemistry link is seen in reports that deaths from heart attacks are greater where drinking water is soft. We all drink some tap water if only in tea, coffee or diluted ‘squash’.

In the next SEGH conference I plan to present a paper giving results from a desk study to establish the plausibility of a hard/soft water effect. The daily Reference Nutrient Intake (RNI) for Mg is men = 12 mmol. Nationally, solid food, pus bottled water plus alcoholic drinks for men provide (mean) 10.62 mmol Mg or 89% RNI. Adding in tap water: reservoir water contributes little Mg (total Mg intake 88.9% RNI); (mean) aquifer water Mg raises total intake to 11.85 mmol (96.5% RNI); a very hard water (North Downs chalk) raises total intake to 50.3 mmol (419% RNI). A beneficial role for Mg in hard drinking water seems plausible.

A recent paper (McKinley et al., 2013) reported a relationship between environmental exposure to trace elements in soil and cancer across Northern Ireland. Copper is an integral part of the antioxidant enzyme, copper-zinc superoxide dismutase. Copper deficiencies in animals and crops in Britain are a well attested problem. Yet we know little about any link from soil to humans.

Much reliable health data can now be accessed over the internet. Perhaps it is time to return to some of the older unanswered questions in environmental geochemistry and health. Should we reduce our emphasis on the toxic elements? Is it time to go back to the future?


By Professor Brian E Davies: ewartdavies@gmail.com


References

McKinley, J. M., Ofterdinger, U., Young, M., Barsby, A., & Gavin, A. (2013). Investigating local relationships between trace elements in soils and cancer data. Spatial Statistics, 5, 25–41.

Simmons, R. W., Pongsakul, P., Chaney, R. L., Saiyasitpanich, D., Klinphoklap, S., & Nobuntou, W. (2003). The relative exclusion of zinc and iron from rice grain in relation to rice grain cadmium as compared to soybean: Implications for human health. Plant and Soil, 257(1).

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • The society for environmental Geochemistry and health (SEGH): a retrospect 2019-02-22
  • Air quality and PM 10 -associated poly-aromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches 2019-02-19

    Abstract

    Diesel engine railway traffic causes atmosphere pollution due to the exhaust emission which may be harmful to the passengers as well as workers. In this study, the air quality and PM10 concentrations were evaluated around a railway station in Northeast India where trains are operated with diesel engines. The gaseous pollutant (e.g. SO2, NO2, and NH3) was collected and measured by using ultraviolet–visible spectroscopy. The advanced level characterizations of the PM10 samples were carried out by using ion chromatography, Fourier-transform infrared, X-ray diffraction, inductively coupled plasma optical emission spectrometry , X-ray photoelectron spectroscopy, field-emission scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy with energy-dispersive spectroscopy techniques to know their possible environmental contaminants. High-performance liquid chromatography technique was used to determine the concentration of polycyclic aromatic hydrocarbons to estimate the possible atmospheric pollution level caused by the rail traffic in the enclosure. The average PM10 concentration was found to be 262.11 µg m−3 (maximum 24 hour) which indicates poor air quality (AQI category) around the rail traffic. The statistical and air mass trajectory analysis was also done to know their mutual correlation and source apportionment. This study will modify traditional studies where only models are used to simulate the origins.

  • The geochemistry of geophagic material consumed in Onangama Village, Northern Namibia: a potential health hazard for pregnant women in the area 2019-02-18

    Abstract

    Ingestion of geophagic materials might affect human health and induce diseases by different ways. The purpose of this study is to determine the geochemical composition of geophagic material consumed especially by pregnant women in Onangama Village, Northern Namibia and to assess its possible health effects. X-ray fluorescence and inductively coupled plasma mass spectrometry were used in order to determine the major, and trace elements as well as anions concentrations of the consumed material. The geochemical analysis revealed high concentrations of aluminium (Al), calcium (Ca), iron (Fe), magnesium (Mg), manganese (Mn), potassium (K), sodium (Na), and silica (Si); and trace elements including arsenic (As), chromium (Cr), mercury (Hg), nickel (Ni) and vanadium (V) as well as sulphate (SO42−), nitrate (NO3), and nitrite (NO2) anions comparing to the recommended daily allowance for pregnant women. The pH for some of the studied samples is alkaline, which might increase the gastrointestinal tract pH (pH < 2) and cause a decrease in the bioavailability of elements. The calculated health risk index (HRI > 1) revealed that Al and Mn might be a potential risk for human consumption. Based on the results obtained from the geochemical analysis, the consumption of the studied material might present a potential health risk to pregnant women including concomitant detrimental maternal and foetal effects.