SEGH Articles

Back to the Future: Brian E Davies (Past President)

08 April 2014
Should we reduce our emphasis on the toxic elements? Is it time to go back to the future?

 

 

In 1970, when SEGH began, we talked about many ideas: is aluminium involved in dementia?; is arsenic an essential element?; is chromium involved in Type 2 diabetes?; can the incidence of gastric cancer be related to copper and zinc in the environment? By 1982, when I organised SEGH, and its first conference, in Britain, priorities had changed to environmental metals and sometimes we now appear to be a pollution society.

 

Have we reached the end of the metals era? For example, lead. The danger to child mental development has been recognised and quantified: the role of hand dirt is understood, paint and petrol are lead free, government regulations are in place, the environmental chemistry of lead is broadly understood. New ideas are now more likely to come from the clinical rather than the earth sciences. Or, cadmium. Little epidemiological evidence has emerged that environmental cadmium is a significant health problem. The special problems in Asia are probably because of poor iron nutrition (Simmons et al., 2003).

 

Death from all causes in 2012 (England and Wales) was 489,274. Accidental poisoning by ‘noxious substances’ accounted for 1,416 (0.3%) in contrast with 8,367 (1.7%) alcohol related deaths. Malignant neoplasms and diseases of the circulatory system each represented 28.8% total deaths. Morbidity data are broadly similar.

 

 

For cardiovascular diseases magnesium is a cofactor for over 300 enzyme systems and is required for energy generation and glycolysis. Magnesium is involved in nerve conduction, muscle contraction, potassium transport, and calcium channels. An environmental geochemistry link is seen in reports that deaths from heart attacks are greater where drinking water is soft. We all drink some tap water if only in tea, coffee or diluted ‘squash’.

In the next SEGH conference I plan to present a paper giving results from a desk study to establish the plausibility of a hard/soft water effect. The daily Reference Nutrient Intake (RNI) for Mg is men = 12 mmol. Nationally, solid food, pus bottled water plus alcoholic drinks for men provide (mean) 10.62 mmol Mg or 89% RNI. Adding in tap water: reservoir water contributes little Mg (total Mg intake 88.9% RNI); (mean) aquifer water Mg raises total intake to 11.85 mmol (96.5% RNI); a very hard water (North Downs chalk) raises total intake to 50.3 mmol (419% RNI). A beneficial role for Mg in hard drinking water seems plausible.

A recent paper (McKinley et al., 2013) reported a relationship between environmental exposure to trace elements in soil and cancer across Northern Ireland. Copper is an integral part of the antioxidant enzyme, copper-zinc superoxide dismutase. Copper deficiencies in animals and crops in Britain are a well attested problem. Yet we know little about any link from soil to humans.

Much reliable health data can now be accessed over the internet. Perhaps it is time to return to some of the older unanswered questions in environmental geochemistry and health. Should we reduce our emphasis on the toxic elements? Is it time to go back to the future?


By Professor Brian E Davies: ewartdavies@gmail.com


References

McKinley, J. M., Ofterdinger, U., Young, M., Barsby, A., & Gavin, A. (2013). Investigating local relationships between trace elements in soils and cancer data. Spatial Statistics, 5, 25–41.

Simmons, R. W., Pongsakul, P., Chaney, R. L., Saiyasitpanich, D., Klinphoklap, S., & Nobuntou, W. (2003). The relative exclusion of zinc and iron from rice grain in relation to rice grain cadmium as compared to soybean: Implications for human health. Plant and Soil, 257(1).

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Characteristics of PM 2.5 , CO 2 and particle-number concentration in mass transit railway carriages in Hong Kong 2017-08-01

    Abstract

    Fine particulate matter (PM2.5) levels, carbon dioxide (CO2) levels and particle-number concentrations (PNC) were monitored in train carriages on seven routes of the mass transit railway in Hong Kong between March and May 2014, using real-time monitoring instruments. The 8-h average PM2.5 levels in carriages on the seven routes ranged from 24.1 to 49.8 µg/m3, higher than levels in Finland and similar to those in New York, and in most cases exceeding the standard set by the World Health Organisation (25 µg/m3). The CO2 concentration ranged from 714 to 1801 ppm on four of the routes, generally exceeding indoor air quality guidelines (1000 ppm over 8 h) and reaching levels as high as those in Beijing. PNC ranged from 1506 to 11,570 particles/cm3, lower than readings in Sydney and higher than readings in Taipei. Correlation analysis indicated that the number of passengers in a given carriage did not affect the PM2.5 concentration or PNC in the carriage. However, a significant positive correlation (p < 0.001, R 2 = 0.834) was observed between passenger numbers and CO2 levels, with each passenger contributing approximately 7.7–9.8 ppm of CO2. The real-time measurements of PM2.5 and PNC varied considerably, rising when carriage doors opened on arrival at a station and when passengers inside the carriage were more active. This suggests that air pollutants outside the train and passenger movements may contribute to PM2.5 levels and PNC. Assessment of the risk associated with PM2.5 exposure revealed that children are most severely affected by PM2.5 pollution, followed in order by juveniles, adults and the elderly. In addition, females were found to be more vulnerable to PM2.5 pollution than males (p < 0.001), and different subway lines were associated with different levels of risk.

  • Comparison of chemical compositions in air particulate matter during summer and winter in Beijing, China 2017-08-01

    Abstract

    The development of industry in Beijing, the capital of China, particularly in last decades, has caused severe environmental pollution including particulate matter (PM), dust–haze, and photochemical smog, which has already caused considerable harm to local ecological environment. Thus, in this study, air particle samples were continuously collected in August and December, 2014. And elements (Si, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Cd, Ba, Pb and Ti) and ions ( \({\text{NO}}_{3}^{-}\) , \({\text{SO}}_{4}^{2-}\) , F, Cl, Na+, K+, Mg2+, Ca2+ and \({\text{NH}}_{4}^{+}\) ) were analyzed by inductively coupled plasma mass spectrometer and ion chromatography. According to seasonal changes, discuss the various pollution situations in order to find possible particulate matter sources and then propose appropriate control strategies to local government. The results indicated serious PM and metallic pollution in some sampling days, especially in December. Chemical Mass Balance model revealed central heating activities, road dust and vehicles contribute as main sources, account for 5.84–32.05 % differently to the summer and winter air pollution in 2014.

  • Annual ambient atmospheric mercury speciation measurement from Longjing, a rural site in Taiwan 2017-08-01

    Abstract

    The main purpose of this study was to monitor ambient air particulates and mercury species [RGM, Hg(p), GEM and total mercury] concentrations and dry depositions over rural area at Longjing in central Taiwan during October 2014 to September 2015. In addition, passive air sampler and knife-edge surrogate surface samplers were used to collect the ambient air mercury species concentrations and dry depositions, respectively, in this study. Moreover, direct mercury analyzer was directly used to detect the mercury Hg(p) and RGM concentrations. The result indicated that: (1) The average highest RGM, Hg(p), GEM and total mercury concentrations, and dry depositions were observed in January, prevailing dust storm occurred in winter season was the possible major reason responsible for the above findings. (2) The highest average RGM, Hg(p), GEM and total mercury concentrations, dry depositions and velocities were occurred in winter. This is because that China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. (3) The results indicated that the total mercury ratios of Kaohsiung to that of this study were 5.61. This is because that Kaohsiung has the largest industry density (~60 %) in Taiwan. (4) the USA showed average lower mercury species concentrations when compared to those of the other world countries. The average ratios of China/USA values were 89, 76 and 160 for total mercury, RGM and Hg(p), respectively, during the years of 2000–2012.