SEGH Articles

Back to the Future: Brian E Davies (Past President)

08 April 2014
Should we reduce our emphasis on the toxic elements? Is it time to go back to the future?

 

 

In 1970, when SEGH began, we talked about many ideas: is aluminium involved in dementia?; is arsenic an essential element?; is chromium involved in Type 2 diabetes?; can the incidence of gastric cancer be related to copper and zinc in the environment? By 1982, when I organised SEGH, and its first conference, in Britain, priorities had changed to environmental metals and sometimes we now appear to be a pollution society.

 

Have we reached the end of the metals era? For example, lead. The danger to child mental development has been recognised and quantified: the role of hand dirt is understood, paint and petrol are lead free, government regulations are in place, the environmental chemistry of lead is broadly understood. New ideas are now more likely to come from the clinical rather than the earth sciences. Or, cadmium. Little epidemiological evidence has emerged that environmental cadmium is a significant health problem. The special problems in Asia are probably because of poor iron nutrition (Simmons et al., 2003).

 

Death from all causes in 2012 (England and Wales) was 489,274. Accidental poisoning by ‘noxious substances’ accounted for 1,416 (0.3%) in contrast with 8,367 (1.7%) alcohol related deaths. Malignant neoplasms and diseases of the circulatory system each represented 28.8% total deaths. Morbidity data are broadly similar.

 

 

For cardiovascular diseases magnesium is a cofactor for over 300 enzyme systems and is required for energy generation and glycolysis. Magnesium is involved in nerve conduction, muscle contraction, potassium transport, and calcium channels. An environmental geochemistry link is seen in reports that deaths from heart attacks are greater where drinking water is soft. We all drink some tap water if only in tea, coffee or diluted ‘squash’.

In the next SEGH conference I plan to present a paper giving results from a desk study to establish the plausibility of a hard/soft water effect. The daily Reference Nutrient Intake (RNI) for Mg is men = 12 mmol. Nationally, solid food, pus bottled water plus alcoholic drinks for men provide (mean) 10.62 mmol Mg or 89% RNI. Adding in tap water: reservoir water contributes little Mg (total Mg intake 88.9% RNI); (mean) aquifer water Mg raises total intake to 11.85 mmol (96.5% RNI); a very hard water (North Downs chalk) raises total intake to 50.3 mmol (419% RNI). A beneficial role for Mg in hard drinking water seems plausible.

A recent paper (McKinley et al., 2013) reported a relationship between environmental exposure to trace elements in soil and cancer across Northern Ireland. Copper is an integral part of the antioxidant enzyme, copper-zinc superoxide dismutase. Copper deficiencies in animals and crops in Britain are a well attested problem. Yet we know little about any link from soil to humans.

Much reliable health data can now be accessed over the internet. Perhaps it is time to return to some of the older unanswered questions in environmental geochemistry and health. Should we reduce our emphasis on the toxic elements? Is it time to go back to the future?


By Professor Brian E Davies: ewartdavies@gmail.com


References

McKinley, J. M., Ofterdinger, U., Young, M., Barsby, A., & Gavin, A. (2013). Investigating local relationships between trace elements in soils and cancer data. Spatial Statistics, 5, 25–41.

Simmons, R. W., Pongsakul, P., Chaney, R. L., Saiyasitpanich, D., Klinphoklap, S., & Nobuntou, W. (2003). The relative exclusion of zinc and iron from rice grain in relation to rice grain cadmium as compared to soybean: Implications for human health. Plant and Soil, 257(1).

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Assessment of the toxicity of silicon nanooxide in relation to various components of the agroecosystem under the conditions of the model experiment 2018-08-18

    Abstract

    Investigation of SiO2 nanoparticles (NPs) effect on Eisenia fetida showed no toxic effect of the metal at a concentration of 250, 500 and 1000 mg per kg of soil, but conversely, a biomass increase from 23.5 to 29.5% (at the protein level decrease from 60 to 80%). The reaction of the earthworm organism fermentative system was expressed in the decrease in the level of superoxide dismutase (SOD) on the 14th day and in the increase in its activity to 27% on the 28th day. The catalase level (CAT) showed low activity at average element concentrations and increase by 39.4% at a dose of 1000 mg/kg. Depression of malonic dialdehyde (MDA) was established at average concentrations of 11.2% and level increase up to 9.1% at a dose of 1000 mg/kg with the prolongation of the effect up to 87.5% after 28-day exposure. The change in the microbiocenosis of the earthworm intestine was manifested by a decrease in the number of ammonifiers (by 42.01–78.9%), as well as in the number of amylolytic microorganisms (by 31.7–65.8%). When the dose of SiO2 NPs increased from 100 to 1000 mg/kg, the number of Azotobacter increased (by 8.2–22.2%), while the number of cellulose-destroying microorganisms decreased to 71.4% at a maximum dose of 1000 mg/kg. The effect of SiO2 NPs on Triticum aestivum L. was noted in the form of a slight suppression of seed germination (no more than 25%), an increase in the length of roots and aerial organs which generally resulted in an increase in plant biomass. Assessing the soil microorganisms’ complex during introduction of metal into the germination medium of Triticum aestivum L., there was noted a decrease in the ammonifiers number (by 4.7–67.6%) with a maximum value at a dose of 1000 mg/kg. The number of microorganisms using mineral nitrogen decreased by 29.5–69.5% with a simultaneous increase in the number at a dose of 50 mg/kg (+ 20%). Depending on NP dose, there was an inhibition of the microscopic fungi development by 18.1–72.7% and an increase in the number of cellulose-destroying microorganisms. For all variants of the experiment, the activity of soil enzymes of the hydrolase and oxidoreductase classes was decreased.

  • Seasonal characteristics of chemical compositions and sources identification of PM 2.5 in Zhuhai, China 2018-08-16

    Abstract

    Fine particulate matter is associated with adverse health effects, but exactly which characteristics of PM2.5 are responsible for this is still widely debated. We evaluated seasonal dynamics of the composition and chemical characteristics of PM2.5 in Zhuhai, China. PM2.5 characteristics at five selected sites within Zhuhai city were analyzed. Sampling began on January 10, 2015, and was conducted for 1 year. The ambient mass concentration, carbon content (organic and elemental carbon, OC and EC), level of inorganic ions, and major chemical composition of PM2.5 were also determined. Average concentrations of PM2.5 were lower than the National Ambient Air Quality Standard (NAAQS) 24-h average of 65 μg/m3. The daily PM2.5 concentration in Zhuhai city exhibited clear seasonal dynamics, with higher daily PM2.5 concentrations in autumn and winter than in spring and summer. Carbon species (OC and EC) and water-soluble ions were the primary components of the PM2.5 fraction of particles. Apart from OC and EC, chemical species in PM2.5 were mainly composed of NH4+ and SO42−. There was a marked difference between the summer and winter periods: the concentrations of OC and EC in winter were roughly 3.4 and 4.0 times than those in summer, while NH4+, SO42−, NO3, and Na+ were 3.2, 4.5, 28.0, and 5.7 times higher in winter than those in summer, respectively. The results of chemical analysis were consistent with three sources dominating PM2.5: coal combustion, biomass burning, and vehicle exhaust; road dust and construction; and from reaction of HCl and HNO3 with NH3 to form NH4Cl and NH4NO3. However, additional work is needed to improve the mass balance and to obtain the source profiles necessary to use these data for source apportionment.

  • Estimates of potential childhood lead exposure from contaminated soil using the USEPA IEUBK model in Melbourne, Australia 2018-08-14

    Abstract

    Soils in inner city areas internationally and in Australia have been contaminated with lead (Pb) primarily from past emissions of Pb in petrol, deteriorating exterior Pb-based paints and from industry. Children can be exposed to Pb in soil dust through ingestion and inhalation leading to elevated blood lead levels (BLLs). Currently, the contribution of soil Pb to the spatial distribution of children’s BLLs is unknown in the Melbourne metropolitan area. In this study, children’s potential BLLs were estimated from surface soil (0–2 cm) samples collected at 250 locations across the Melbourne metropolitan area using the United States Environmental Protection Agency (USEPA) Integrated Exposure Uptake Biokinetic (IEUBK) model. A dataset of 250 surface soil Pb concentrations indicate that soil Pb concentrations are highly variable but are generally elevated in the central and western portions of the Melbourne metropolitan area. The mean, median and geometric soil Pb concentrations were 193, 110 and 108 mg/kg, respectively. Approximately 20 and 4% of the soil samples exceeded the Australian HIL-A residential and HIL-C recreational soil Pb guidelines of 300 and 600 mg/kg, respectively. The IEUBK model predicted a geometric mean BLL of 2.5 ± 2.1 µg/dL (range: 1.3–22.5 µg/dL) in a hypothetical 24-month-old child with BLLs exceeding 5 and 10 µg/dL at 11.6 and 0.8% of the sampling locations, respectively. This study suggests children’s exposure to Pb contaminated surface soil could potentially be associated with low-level BLLs in some locations in the Melbourne metropolitan area.