SEGH Articles

Back to the Future: Brian E Davies (Past President)

08 April 2014
Should we reduce our emphasis on the toxic elements? Is it time to go back to the future?

 

 

In 1970, when SEGH began, we talked about many ideas: is aluminium involved in dementia?; is arsenic an essential element?; is chromium involved in Type 2 diabetes?; can the incidence of gastric cancer be related to copper and zinc in the environment? By 1982, when I organised SEGH, and its first conference, in Britain, priorities had changed to environmental metals and sometimes we now appear to be a pollution society.

 

Have we reached the end of the metals era? For example, lead. The danger to child mental development has been recognised and quantified: the role of hand dirt is understood, paint and petrol are lead free, government regulations are in place, the environmental chemistry of lead is broadly understood. New ideas are now more likely to come from the clinical rather than the earth sciences. Or, cadmium. Little epidemiological evidence has emerged that environmental cadmium is a significant health problem. The special problems in Asia are probably because of poor iron nutrition (Simmons et al., 2003).

 

Death from all causes in 2012 (England and Wales) was 489,274. Accidental poisoning by ‘noxious substances’ accounted for 1,416 (0.3%) in contrast with 8,367 (1.7%) alcohol related deaths. Malignant neoplasms and diseases of the circulatory system each represented 28.8% total deaths. Morbidity data are broadly similar.

 

 

For cardiovascular diseases magnesium is a cofactor for over 300 enzyme systems and is required for energy generation and glycolysis. Magnesium is involved in nerve conduction, muscle contraction, potassium transport, and calcium channels. An environmental geochemistry link is seen in reports that deaths from heart attacks are greater where drinking water is soft. We all drink some tap water if only in tea, coffee or diluted ‘squash’.

In the next SEGH conference I plan to present a paper giving results from a desk study to establish the plausibility of a hard/soft water effect. The daily Reference Nutrient Intake (RNI) for Mg is men = 12 mmol. Nationally, solid food, pus bottled water plus alcoholic drinks for men provide (mean) 10.62 mmol Mg or 89% RNI. Adding in tap water: reservoir water contributes little Mg (total Mg intake 88.9% RNI); (mean) aquifer water Mg raises total intake to 11.85 mmol (96.5% RNI); a very hard water (North Downs chalk) raises total intake to 50.3 mmol (419% RNI). A beneficial role for Mg in hard drinking water seems plausible.

A recent paper (McKinley et al., 2013) reported a relationship between environmental exposure to trace elements in soil and cancer across Northern Ireland. Copper is an integral part of the antioxidant enzyme, copper-zinc superoxide dismutase. Copper deficiencies in animals and crops in Britain are a well attested problem. Yet we know little about any link from soil to humans.

Much reliable health data can now be accessed over the internet. Perhaps it is time to return to some of the older unanswered questions in environmental geochemistry and health. Should we reduce our emphasis on the toxic elements? Is it time to go back to the future?


By Professor Brian E Davies: ewartdavies@gmail.com


References

McKinley, J. M., Ofterdinger, U., Young, M., Barsby, A., & Gavin, A. (2013). Investigating local relationships between trace elements in soils and cancer data. Spatial Statistics, 5, 25–41.

Simmons, R. W., Pongsakul, P., Chaney, R. L., Saiyasitpanich, D., Klinphoklap, S., & Nobuntou, W. (2003). The relative exclusion of zinc and iron from rice grain in relation to rice grain cadmium as compared to soybean: Implications for human health. Plant and Soil, 257(1).

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Agro-ecological suitability assessment of Chinese Medicinal Yam under future climate change 2019-10-15

    Abstract

    Chinese Medicinal Yam (CMY) has been prescribed as medicinal food for thousand years in China by Traditional Chinese Medicine (TCM) practitioners. Its medical benefits include nourishing the stomach and spleen to improve digestion, replenishing lung and kidney, etc., according to the TCM literature. As living standard rises and public health awareness improves in recent years, the potential medicinal benefits of CMY have attracted increasing attention in China. It has been found that the observed climate change in last several decades, together with the change in economic structure, has driven significant shift in the pattern of the traditional CMY planting areas. To identify suitable planting area for CMY in the near future is critical for ensuring the quality and supply quantity of CMY, guiding the layout of CMY industry, and safeguarding the sustainable development of CMY resources for public health. In this study, we first collect 30-year records of CMY varieties and their corresponding phenology and agro-meteorological observations. We then consolidate these data and use them to enrich and update the eco-physiological parameters of CMY in the agro-ecological zone (AEZ) model. The updated CMY varieties and AEZ model are validated using the historical planting area and production under observed climate conditions. After the successful validation, we use the updated AEZ model to simulate the potential yield of CMY and identify the suitable planting regions under future climate projections in China. This study shows that regions with high ecological similarity to the genuine and core producing areas of CMY mainly distribute in eastern Henan, southeastern Hebei, and western Shandong. The climate suitability of these areas will be improved due to global warming in the next 50 years, and therefore, they will continue to be the most suitable CMY planting regions.

  • Application of stable isotopes and dissolved ions for monitoring landfill leachate contamination 2019-10-15

    Abstract

    We evaluated groundwater contamination by landfill leachate at a municipal landfill and characterized isotopic and hydrogeochemical evidence of the degradation and natural attenuation of buried organic matter at the study site. Dissolved ion content was generally much higher in the leachate than in the surrounding groundwater. The leachate was characterized by highly elevated bicarbonate and ammonium levels and a lack of nitrate and sulfate, indicating generation under anoxic conditions. Leachate δD and δ13CDIC values were much higher than those of the surrounding groundwater; some groundwater samples near the landfill showed a significant contamination by the leachate plume. Hydrochemical characteristics of the groundwater suggest that aquifer geology in the study area plays a key role in controlling the natural attenuation of leachate plumes in this oxygen-limited environment.

  • Lead transfer into the vegetation layer growing naturally in a Pb-contaminated site 2019-10-10

    Abstract

    The lead was one of the main elements in the glazes used to colour ceramic tiles. Due to its presence, ceramic sludge has been a source of environmental pollution since this dangerous waste has been often spread into the soil without any measures of pollution control. These contaminated sites are often located close to industrial sites in the peri-urban areas, thus representing a considerable hazard to the human and ecosystem health. In this study, we investigated the lead transfer into the vegetation layer (Phragmites australis, Salix alba and Sambucus nigra) growing naturally along a Pb-contaminated ditch bank. The analysis showed a different lead accumulation among the species and their plant tissues. Salix trees were not affected by the Pb contamination, possibly because their roots mainly develop below the contaminated deposit. Differently, Sambucus accumulated high concentrations of lead in all plant tissues and fruits, representing a potential source of biomagnification. Phragmites accumulated large amounts of lead in the rhizomes and, considering its homogeneous distribution on the site, was used to map the contamination. Analysing the Pb concentration within plant tissues, we got at the same time information about the spread, the history of the contamination and the relative risks. Finally, we discussed the role of natural recolonizing plants for the soil pollution mitigation and their capacity on decreasing soil erosion and water run-off.