SEGH Articles

Brick Kilns and Fish: a Symbiotic Relationship?

08 April 2014
During the 1st two weeks in March Dr Andy Marriott and Dr Simon Chenery visited India to foster ties between India and UK environmental scientists.


During the 1st two weeks in March Dr Andy Marriott and Dr Simon Chenery visited India to foster ties between India and UK environmental scientists. They were funded by the BGS Global and Centre for Environmental Geochemistry teams to develop future collaborative research in the growing suburban aquaculture systems.

Arriving in Calcutta, the city was an immediate assault on our senses. The loud cacophony of frantic horns emanating from all manner of transportation, buses, lorries, cars, motorbikes and of course the local form of transport the tut tuk’s (auto-rickshaw) sounded there confusion as each tried to jostle for position in the melee that was traffic control. India Style!!!! Construction work is everywhere with buildings sprouting up from land cleared for just this purpose. After such a long journey the developing world is really in your face! We arrived at our destination; the university guest house in its faded glory seemed like an ocean of calm in what appears to be a world of change. On our arrival we were met by Dr Sarkar our host and dear friend from the Marine Biology department at the University of Calcutta.

 This was my first trip to India and my colleague Dr Simon Chenery’s second. We visited India with the intention of developing a joint international project to investigate the biogeochemical cycling of pollutants/minerals and potential for bioaccumulation in aquacultural fish from Indian pond systems. This was our opportunity to exchange ideas and experiences from our different fields of expertise with a view to applying to UK and Indian agencies future research funding. Crucially, we were there to understand the aquaculture ponds role in supplying fish as the main source of protein/minerals for Calcutta and potential for pollutant cycling.

One hour south of Calcutta we approached the aquaculture pond systems formed from former brick/clay extraction sites. Here you see brick manufacture on a large scale, with brick kilns located along the main Hughli River, with their chimneys, spewing out their acrid plumes. We counted 10 such chimneys along the river banks. The areas surrounding the kilns are littered with ponds large and small, from where the removed clay are now filled with water from the river. Intertwined, these ponds are split using clay left over from the brick manufacture as makeshift walls to separate each pond. Along the makeshift walls were small reed and wood huts. We were informed that the huts were used by what we would term the local bailiff and would allow him to remain on site and to protect the pond owner’s interests. The Fish! An indication on how profitable the ponds were in the ever increasing system of aquaculture production.

Brick manufacture and the chimneys which form an integral part of the process go hand in hand with fish aquaculture with ponds forming part of the overall system.

 Pond construction and channels to allow the movement of water and fish.

Areas where Brick kilns meet fisheries aquaculture. Note the makeshift hut on the right of the picture for the pond bailiff.

Discussions with locals by our hosts led us to a couple of likely sites. After some negotiation, we were taken to a pond where they had some fish ready netted. Surrounded by a bevy of men, women and children we collected our fish, water and sediment. Our hosts went through a questionnaire with the fisherman. Introductions complete, we were then taken to the first pond and watched as the owner walked through with his accomplice to corral fish into a corner where he could cast his net. Throughout the week we visited 9 sites/ponds and collected between 4-8 fish from each one. Now followed the task of processing all of our samples.

Local fisherman casting his net.

 

 The pond owner proudly holding a fish surrounded by family and locals from his village.

Back at the University we prepared our samples, filtered the water and stored the sediment. Then came the arduous task of processing all those fish. Working as a team, Dr Chenery and I, and the ever helpful and enthusiastic Baskhar and two of Dr Sarkar’s PhD students Dibyendu and Soumi worked through collecting tissue samples e.g. muscle, liver and gonads combined with biological measurements such as length and weight. Scale samples were collected for aging and the removal of the fish’s ear stone or otolith. This little aragonite structure would be later used to verify the fishes age and to assess elemental concentrations incorporated within its structure using LA-and sb-ICP-MS. Trained by myself in the black art of otolith extraction Baskhar, Debindar and Soumi all became quite adept and finding these sometimes elusive little structures. Tissue samples were then vacuum sealed and stored frozen until we would transport them back with us to the UK the following morning. Detailed analyses will follow to better understand the mineral and potential biogeochemical cycling of pollutants in these ponds which work on both an artisanal and commercial scale.

From left to right. Dibyendu, Dr Chenery, Baskhar and Soumi process one of the fish in the labs at the marine science department.

Team Fish: Soumi Mitra, Dr Andy Marriott, Dr Simon Chenery, Baskhar Deb Bhattacharya, Dr Santosh Sarkar (our host) and Dibyendu Rakshit (BGS, University of Bangor, University of Calcutta).

 

By Dr Andrew Marriott, BGS and University of Bangor.

 

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Assessment of the toxicity of silicon nanooxide in relation to various components of the agroecosystem under the conditions of the model experiment 2018-08-18

    Abstract

    Investigation of SiO2 nanoparticles (NPs) effect on Eisenia fetida showed no toxic effect of the metal at a concentration of 250, 500 and 1000 mg per kg of soil, but conversely, a biomass increase from 23.5 to 29.5% (at the protein level decrease from 60 to 80%). The reaction of the earthworm organism fermentative system was expressed in the decrease in the level of superoxide dismutase (SOD) on the 14th day and in the increase in its activity to 27% on the 28th day. The catalase level (CAT) showed low activity at average element concentrations and increase by 39.4% at a dose of 1000 mg/kg. Depression of malonic dialdehyde (MDA) was established at average concentrations of 11.2% and level increase up to 9.1% at a dose of 1000 mg/kg with the prolongation of the effect up to 87.5% after 28-day exposure. The change in the microbiocenosis of the earthworm intestine was manifested by a decrease in the number of ammonifiers (by 42.01–78.9%), as well as in the number of amylolytic microorganisms (by 31.7–65.8%). When the dose of SiO2 NPs increased from 100 to 1000 mg/kg, the number of Azotobacter increased (by 8.2–22.2%), while the number of cellulose-destroying microorganisms decreased to 71.4% at a maximum dose of 1000 mg/kg. The effect of SiO2 NPs on Triticum aestivum L. was noted in the form of a slight suppression of seed germination (no more than 25%), an increase in the length of roots and aerial organs which generally resulted in an increase in plant biomass. Assessing the soil microorganisms’ complex during introduction of metal into the germination medium of Triticum aestivum L., there was noted a decrease in the ammonifiers number (by 4.7–67.6%) with a maximum value at a dose of 1000 mg/kg. The number of microorganisms using mineral nitrogen decreased by 29.5–69.5% with a simultaneous increase in the number at a dose of 50 mg/kg (+ 20%). Depending on NP dose, there was an inhibition of the microscopic fungi development by 18.1–72.7% and an increase in the number of cellulose-destroying microorganisms. For all variants of the experiment, the activity of soil enzymes of the hydrolase and oxidoreductase classes was decreased.

  • Seasonal characteristics of chemical compositions and sources identification of PM 2.5 in Zhuhai, China 2018-08-16

    Abstract

    Fine particulate matter is associated with adverse health effects, but exactly which characteristics of PM2.5 are responsible for this is still widely debated. We evaluated seasonal dynamics of the composition and chemical characteristics of PM2.5 in Zhuhai, China. PM2.5 characteristics at five selected sites within Zhuhai city were analyzed. Sampling began on January 10, 2015, and was conducted for 1 year. The ambient mass concentration, carbon content (organic and elemental carbon, OC and EC), level of inorganic ions, and major chemical composition of PM2.5 were also determined. Average concentrations of PM2.5 were lower than the National Ambient Air Quality Standard (NAAQS) 24-h average of 65 μg/m3. The daily PM2.5 concentration in Zhuhai city exhibited clear seasonal dynamics, with higher daily PM2.5 concentrations in autumn and winter than in spring and summer. Carbon species (OC and EC) and water-soluble ions were the primary components of the PM2.5 fraction of particles. Apart from OC and EC, chemical species in PM2.5 were mainly composed of NH4+ and SO42−. There was a marked difference between the summer and winter periods: the concentrations of OC and EC in winter were roughly 3.4 and 4.0 times than those in summer, while NH4+, SO42−, NO3, and Na+ were 3.2, 4.5, 28.0, and 5.7 times higher in winter than those in summer, respectively. The results of chemical analysis were consistent with three sources dominating PM2.5: coal combustion, biomass burning, and vehicle exhaust; road dust and construction; and from reaction of HCl and HNO3 with NH3 to form NH4Cl and NH4NO3. However, additional work is needed to improve the mass balance and to obtain the source profiles necessary to use these data for source apportionment.

  • Estimates of potential childhood lead exposure from contaminated soil using the USEPA IEUBK model in Melbourne, Australia 2018-08-14

    Abstract

    Soils in inner city areas internationally and in Australia have been contaminated with lead (Pb) primarily from past emissions of Pb in petrol, deteriorating exterior Pb-based paints and from industry. Children can be exposed to Pb in soil dust through ingestion and inhalation leading to elevated blood lead levels (BLLs). Currently, the contribution of soil Pb to the spatial distribution of children’s BLLs is unknown in the Melbourne metropolitan area. In this study, children’s potential BLLs were estimated from surface soil (0–2 cm) samples collected at 250 locations across the Melbourne metropolitan area using the United States Environmental Protection Agency (USEPA) Integrated Exposure Uptake Biokinetic (IEUBK) model. A dataset of 250 surface soil Pb concentrations indicate that soil Pb concentrations are highly variable but are generally elevated in the central and western portions of the Melbourne metropolitan area. The mean, median and geometric soil Pb concentrations were 193, 110 and 108 mg/kg, respectively. Approximately 20 and 4% of the soil samples exceeded the Australian HIL-A residential and HIL-C recreational soil Pb guidelines of 300 and 600 mg/kg, respectively. The IEUBK model predicted a geometric mean BLL of 2.5 ± 2.1 µg/dL (range: 1.3–22.5 µg/dL) in a hypothetical 24-month-old child with BLLs exceeding 5 and 10 µg/dL at 11.6 and 0.8% of the sampling locations, respectively. This study suggests children’s exposure to Pb contaminated surface soil could potentially be associated with low-level BLLs in some locations in the Melbourne metropolitan area.