SEGH Articles

Brick Kilns and Fish: a Symbiotic Relationship?

08 April 2014
During the 1st two weeks in March Dr Andy Marriott and Dr Simon Chenery visited India to foster ties between India and UK environmental scientists.


During the 1st two weeks in March Dr Andy Marriott and Dr Simon Chenery visited India to foster ties between India and UK environmental scientists. They were funded by the BGS Global and Centre for Environmental Geochemistry teams to develop future collaborative research in the growing suburban aquaculture systems.

Arriving in Calcutta, the city was an immediate assault on our senses. The loud cacophony of frantic horns emanating from all manner of transportation, buses, lorries, cars, motorbikes and of course the local form of transport the tut tuk’s (auto-rickshaw) sounded there confusion as each tried to jostle for position in the melee that was traffic control. India Style!!!! Construction work is everywhere with buildings sprouting up from land cleared for just this purpose. After such a long journey the developing world is really in your face! We arrived at our destination; the university guest house in its faded glory seemed like an ocean of calm in what appears to be a world of change. On our arrival we were met by Dr Sarkar our host and dear friend from the Marine Biology department at the University of Calcutta.

 This was my first trip to India and my colleague Dr Simon Chenery’s second. We visited India with the intention of developing a joint international project to investigate the biogeochemical cycling of pollutants/minerals and potential for bioaccumulation in aquacultural fish from Indian pond systems. This was our opportunity to exchange ideas and experiences from our different fields of expertise with a view to applying to UK and Indian agencies future research funding. Crucially, we were there to understand the aquaculture ponds role in supplying fish as the main source of protein/minerals for Calcutta and potential for pollutant cycling.

One hour south of Calcutta we approached the aquaculture pond systems formed from former brick/clay extraction sites. Here you see brick manufacture on a large scale, with brick kilns located along the main Hughli River, with their chimneys, spewing out their acrid plumes. We counted 10 such chimneys along the river banks. The areas surrounding the kilns are littered with ponds large and small, from where the removed clay are now filled with water from the river. Intertwined, these ponds are split using clay left over from the brick manufacture as makeshift walls to separate each pond. Along the makeshift walls were small reed and wood huts. We were informed that the huts were used by what we would term the local bailiff and would allow him to remain on site and to protect the pond owner’s interests. The Fish! An indication on how profitable the ponds were in the ever increasing system of aquaculture production.

Brick manufacture and the chimneys which form an integral part of the process go hand in hand with fish aquaculture with ponds forming part of the overall system.

 Pond construction and channels to allow the movement of water and fish.

Areas where Brick kilns meet fisheries aquaculture. Note the makeshift hut on the right of the picture for the pond bailiff.

Discussions with locals by our hosts led us to a couple of likely sites. After some negotiation, we were taken to a pond where they had some fish ready netted. Surrounded by a bevy of men, women and children we collected our fish, water and sediment. Our hosts went through a questionnaire with the fisherman. Introductions complete, we were then taken to the first pond and watched as the owner walked through with his accomplice to corral fish into a corner where he could cast his net. Throughout the week we visited 9 sites/ponds and collected between 4-8 fish from each one. Now followed the task of processing all of our samples.

Local fisherman casting his net.

 

 The pond owner proudly holding a fish surrounded by family and locals from his village.

Back at the University we prepared our samples, filtered the water and stored the sediment. Then came the arduous task of processing all those fish. Working as a team, Dr Chenery and I, and the ever helpful and enthusiastic Baskhar and two of Dr Sarkar’s PhD students Dibyendu and Soumi worked through collecting tissue samples e.g. muscle, liver and gonads combined with biological measurements such as length and weight. Scale samples were collected for aging and the removal of the fish’s ear stone or otolith. This little aragonite structure would be later used to verify the fishes age and to assess elemental concentrations incorporated within its structure using LA-and sb-ICP-MS. Trained by myself in the black art of otolith extraction Baskhar, Debindar and Soumi all became quite adept and finding these sometimes elusive little structures. Tissue samples were then vacuum sealed and stored frozen until we would transport them back with us to the UK the following morning. Detailed analyses will follow to better understand the mineral and potential biogeochemical cycling of pollutants in these ponds which work on both an artisanal and commercial scale.

From left to right. Dibyendu, Dr Chenery, Baskhar and Soumi process one of the fish in the labs at the marine science department.

Team Fish: Soumi Mitra, Dr Andy Marriott, Dr Simon Chenery, Baskhar Deb Bhattacharya, Dr Santosh Sarkar (our host) and Dibyendu Rakshit (BGS, University of Bangor, University of Calcutta).

 

By Dr Andrew Marriott, BGS and University of Bangor.

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Fate and partitioning of heavy metals in soils from landfill sites in Cape Town, South Africa: a health risk approach to data interpretation 2019-06-14

    Abstract

    The fate and persistence of trace metals in soils and sludge from landfill sites are crucial in determining the hazard posed by landfill, techniques for their restoration and potential reuse purposes of landfill sites after closure and restoration. A modified European Community Bureau of Reference’s (BCR) sequential extraction procedure was applied for partitioning and evaluating the mobility and persistence of trace metals (As, Cd, Cr, Cu, Ni, Pb, Sb, Se, Zn) in soils from three landfill sites and sludge sample from Cape Town, South Africa. Inductively coupled plasma optical emission spectroscopy was used to analyze BCR extracts. The mobility sequence based on the BCR mobile fraction showed that Cu (74–87%), Pb (65–80%), Zn (59–82%) and Cd (55–66%) constituted the mobile metals in the soils from the three sites. The mobility of Cu, Zn and Ni (> 95%) was particularly high in the sludge sample, which showed significant enrichment compared to the soil samples. Geo-accumulation index (Igeo) and risk assessment code were used to further assess the environmental risk of the metals in the soils. Exposure to the soils and sludge did not pose any non-cancer risks to adult and children as the hazard quotient and hazard index values were all below the safe level of 1. The cancer risks from Cd, Cr and Ni require that remedial action be considered during closure and restoration of the landfill sites.

  • An investigation into the use of < 38 µm fraction as a proxy for < 10 µm road dust particles 2019-06-13

    Abstract

    It is well documented that a large portion of urban particulate matters is derived from road dust. Isolating particles of RD which are small enough to be inhaled, however, is a difficult process. In this study, it is shown for the first time that the < 38 µm fraction of road dust particles can be used as a proxy for road dust particles < 10 µm in bioaccessibility studies. This study probed similarities between the < 10 and < 38µm fractions of urban road dust to show that the larger of the two can be used for analysis for which larger sample masses are required, as is the case with in vitro analysis. Road dust, initially segregated to size < 38 µm using sieves, was again size segregated to < 10 µm using water deposition. Both the original < 38 µm and the separated < 10 µm fractions were then subject to single particle analysis by SEM–EDX and bulk analysis by ICP-OES for its elemental composition. Dissolution tests in artificial lysosomal fluid, representative of lung fluid, were carried out on both samples to determine % bioaccessibility of selected potentially harmful elements and thus probe similarities/differences in in vitro behaviour between the two fractions. The separation technique achieved 94.3% of particles < 10 µm in terms of number of particles (the original sample contained 90.4% as determined by SEM–EDX). Acid-soluble metal concentration results indicated differences between the samples. However, when manipulated to negate the input of Si, SEM–EDX data showed general similarities in metal concentrations. Dissolution testing results indicated similar behaviour between the two samples in a simulated biological fluid.

  • Degradation of petroleum hydrocarbons in unsaturated soil and effects on subsequent biodegradation by potassium permanganate 2019-06-13

    Abstract

    To date, the oxidation of petroleum hydrocarbons using permanganate has been investigated rarely. Only a few studies on the remediation of unsaturated soil using permanganate can be found in the literature. This is, to the best of our knowledge, the first study conducted using permanganate pretreatment to degrade petroleum hydrocarbons in unsaturated soil in combination with subsequent bioaugmentation. The pretreatment of diesel-contaminated unsaturated soil with 0.5-pore-volume (5%) potassium permanganate (PP) by solution pouring and foam spraying (with a surfactant) achieved the total petroleum hydrocarbon (TPH) removal efficiencies of 37% and 72.1%, respectively. The PP foam, when coupled with bioaugmentation foam, further degraded the TPH to a final concentration of 438 mg/kg (92.1% total reduction). The experiment was conducted without soil mixing or disturbance. The relatively high TPH removal efficiency achieved by the PP–bioaugmentation serial foam application may be attributed to an increase in soil pH caused by the PP and effective infiltration of the remediation agent by foaming. The applied PP foam increased the pH of the acidic soil, thus enhancing microbial activity. The first-order biodegradation rate after PP oxidation was calculated to be 0.068 d−1. Furthermore, 94% of the group of relatively persistent hydrocarbons (C18–C22) was removed by PP–bioaugmentation, as verified by chromatogram peaks. Some physicochemical parameters related to contaminant removal efficiency were also evaluated. The results reveal that PP can degrade soil TPH and significantly enhance the biodegradation rate in unsaturated diesel-contaminated soil when combined with bioaugmentation foam.