SEGH Articles

Brick Kilns and Fish: a Symbiotic Relationship?

08 April 2014
During the 1st two weeks in March Dr Andy Marriott and Dr Simon Chenery visited India to foster ties between India and UK environmental scientists.


During the 1st two weeks in March Dr Andy Marriott and Dr Simon Chenery visited India to foster ties between India and UK environmental scientists. They were funded by the BGS Global and Centre for Environmental Geochemistry teams to develop future collaborative research in the growing suburban aquaculture systems.

Arriving in Calcutta, the city was an immediate assault on our senses. The loud cacophony of frantic horns emanating from all manner of transportation, buses, lorries, cars, motorbikes and of course the local form of transport the tut tuk’s (auto-rickshaw) sounded there confusion as each tried to jostle for position in the melee that was traffic control. India Style!!!! Construction work is everywhere with buildings sprouting up from land cleared for just this purpose. After such a long journey the developing world is really in your face! We arrived at our destination; the university guest house in its faded glory seemed like an ocean of calm in what appears to be a world of change. On our arrival we were met by Dr Sarkar our host and dear friend from the Marine Biology department at the University of Calcutta.

 This was my first trip to India and my colleague Dr Simon Chenery’s second. We visited India with the intention of developing a joint international project to investigate the biogeochemical cycling of pollutants/minerals and potential for bioaccumulation in aquacultural fish from Indian pond systems. This was our opportunity to exchange ideas and experiences from our different fields of expertise with a view to applying to UK and Indian agencies future research funding. Crucially, we were there to understand the aquaculture ponds role in supplying fish as the main source of protein/minerals for Calcutta and potential for pollutant cycling.

One hour south of Calcutta we approached the aquaculture pond systems formed from former brick/clay extraction sites. Here you see brick manufacture on a large scale, with brick kilns located along the main Hughli River, with their chimneys, spewing out their acrid plumes. We counted 10 such chimneys along the river banks. The areas surrounding the kilns are littered with ponds large and small, from where the removed clay are now filled with water from the river. Intertwined, these ponds are split using clay left over from the brick manufacture as makeshift walls to separate each pond. Along the makeshift walls were small reed and wood huts. We were informed that the huts were used by what we would term the local bailiff and would allow him to remain on site and to protect the pond owner’s interests. The Fish! An indication on how profitable the ponds were in the ever increasing system of aquaculture production.

Brick manufacture and the chimneys which form an integral part of the process go hand in hand with fish aquaculture with ponds forming part of the overall system.

 Pond construction and channels to allow the movement of water and fish.

Areas where Brick kilns meet fisheries aquaculture. Note the makeshift hut on the right of the picture for the pond bailiff.

Discussions with locals by our hosts led us to a couple of likely sites. After some negotiation, we were taken to a pond where they had some fish ready netted. Surrounded by a bevy of men, women and children we collected our fish, water and sediment. Our hosts went through a questionnaire with the fisherman. Introductions complete, we were then taken to the first pond and watched as the owner walked through with his accomplice to corral fish into a corner where he could cast his net. Throughout the week we visited 9 sites/ponds and collected between 4-8 fish from each one. Now followed the task of processing all of our samples.

Local fisherman casting his net.

 

 The pond owner proudly holding a fish surrounded by family and locals from his village.

Back at the University we prepared our samples, filtered the water and stored the sediment. Then came the arduous task of processing all those fish. Working as a team, Dr Chenery and I, and the ever helpful and enthusiastic Baskhar and two of Dr Sarkar’s PhD students Dibyendu and Soumi worked through collecting tissue samples e.g. muscle, liver and gonads combined with biological measurements such as length and weight. Scale samples were collected for aging and the removal of the fish’s ear stone or otolith. This little aragonite structure would be later used to verify the fishes age and to assess elemental concentrations incorporated within its structure using LA-and sb-ICP-MS. Trained by myself in the black art of otolith extraction Baskhar, Debindar and Soumi all became quite adept and finding these sometimes elusive little structures. Tissue samples were then vacuum sealed and stored frozen until we would transport them back with us to the UK the following morning. Detailed analyses will follow to better understand the mineral and potential biogeochemical cycling of pollutants in these ponds which work on both an artisanal and commercial scale.

From left to right. Dibyendu, Dr Chenery, Baskhar and Soumi process one of the fish in the labs at the marine science department.

Team Fish: Soumi Mitra, Dr Andy Marriott, Dr Simon Chenery, Baskhar Deb Bhattacharya, Dr Santosh Sarkar (our host) and Dibyendu Rakshit (BGS, University of Bangor, University of Calcutta).

 

By Dr Andrew Marriott, BGS and University of Bangor.

 

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Biochar-based constructed wetlands to treat reverse osmosis rejected concentrates in chronic kidney disease endemic areas in Sri Lanka 2017-12-01

    Abstract

    The objectives were to investigate the potential remedial measures for reverse osmosis (RO) rejected water through constructed wetlands (CWs) with low-cost materials in the media established in chronic kidney disease of unknown etiology (CKDu) prevalent area in Sri Lanka. A pilot-scale surface and subsurface water CWs were established at the Medawachchiya community-based RO water supply unit. Locally available soil, calicut tile and biochar were used in proportions of 81, 16.5 and 2.5% (w/w), respectively, as filter materials in the subsurface. Vetiver grass and Scirpus grossus were selected for subsurface wetland while water lettuce and water hyacinth were chosen for free water surface CWs. Results showed that the CKDu sensitive parameters; total dissolved solids, hardness, total alkalinity and fluoride were reduced considerably (20–85%) and most met desirable levels of stipulated ambient standards. Biochar seemed to play a major role in removing fluoride from the system which may be due to the existing and adsorbed K+, Ca+2, Mg+2, etc. on the biochar surface via chemisorption. The least reduction was observed for alkalinity. This study indicated potential purification of aforesaid ions in water which are considerably present in RO rejection. Therefore, the invented bio-geo constructed wetland can be considered as a sustainable, economical and effective option for reducing high concentrations of CKDu sensitive parameters in RO rejected water before discharging into the inland waters.

  • Medical geology of endemic goiter in Kalutara, Sri Lanka; distribution and possible causes 2017-12-01

    Abstract

    This study assesses the distribution of goiter in the Kalutara District, Sri Lanka in order to find causative factors for the occurrence of goiter even after the salt iodization. A questionnaire survey was conducted at the household level and at the same time iodine and selenium levels of the water sources were analyzed. Questionnaire survey results indicated the highest numbers of goiter patients in the northern part where the lowest were found in the southern sector which may be due to the presence of acid sulfate soils. Females were more susceptible and it even showed a transmittance between generations. Average iodine concentrations in subsurface water of goiter endemic regions are 28.25 ± 15.47 μg/L whereas non-goiter regions show identical values at 24.74 ± 18.29 μg/L. Surface water exhibited relatively high values at 30.87 ± 16.13 μg/L. Endemic goiter was reported in some isolated patches where iodine and selenium concentrations low, latter was <10 μg/L. The formation of acid sulfate soils in the marshy lands in Kalutara district may lead to transformation of biological available iodine oxidation into volatile iodine by humic substances, at the same time organic matter rich peaty soil may have strong held of iodine and selenium which again induced by low pH and high temperature were suggested as the instrumental factors in the endemic goiter in Kalutara district. Hence, geochemical features such as soil pH, organic matter and thick lateritic cap in the Kalutara goiter endemic area play a role in controlling the available selenium and iodine for food chain through plant uptake and in water.

  • Nickel accumulation in paddy rice on serpentine soils containing high geogenic nickel contents in Taiwan 2017-12-01

    Abstract

    We investigated the extractability of nickel (Ni) in serpentine soils collected from rice paddy fields in eastern Taiwan to evaluate the bioavailability of Ni in the soils as well as for demonstrating the health risks of Ni in rice. Total Ni concentrations in the soils ranged were 70.2–2730 mg/kg (mean, 472 mg/kg), greatly exceeding the natural background content and soil control standard in Taiwan. Available Ni concentration only accounts for <10% of total soil Ni content; 0.1 N HCl-extractable Ni was the more suitable index for Ni bioavailability in the soil to rice than was diethylenetriaminepentaacetic acid (DTPA)-extractable Ni. The accumulation ability of rice roots was much higher than that of its shoots; however, compared with those reported previously, our brown and polished rice samples contained much higher Ni concentrations, within the ranges of 1.50–4.53 and 2.45–5.54 mg/kg, respectively. On the basis of the provisional tolerable Ni intake for adults recommended by the World Health Organization (WHO), daily consumption of this rice can result in an excessive Ni intake.