SEGH Articles

Cadmium (Cd) contamination of paddy fields in Mao Tao, Western Thailand

01 September 2011
Peerapat Kosolsaksakul is a 2nd year PhD student who was winner of the Springer / Hemphill Best Poster presentation at SEGH 2011.

 

My PhD research is in its second year at the University of Edinburgh studying the Geochemical Behaviour of Cd in a Contaminated Watershed, Tak Province, Western Thailand.

During the 1960-70s, major projects to develop chemically supported agriculture, infrastructure, industrial estates and mining were launched in order to enhance the Thai economy. Unfortunately, in the areas where these projects took place, this has led to ecosystem and, in some cases, human health deterioration. Over the last decade in particular, there has been an increasing number of biogeochemical studies which aim to provide a better understanding of the changes occurring within the ecosystem, especially in lowland areas which have been contaminated to a high level with potentially toxic heavy elements such as cadmium (Cd). 

One example of such a contaminated area is Mae Tao, a small watershed in Tak province, western Thailand.  In 2003, the International Water Management Institute in collaboration with the Department of Agriculture, Thailand, observed that the concentration of Cd in paddy fields and rice was more than a hundred times the common background values of 0.14 mg kg-1 and 0.2 mg kg-1 for soil and rice, respectively (Simmons, 2005). This caused great concern amongst farmers and local people not only due to the tangible health problems but also to the economic effects, e.g. decreased rice demand and a government policy of not supporting rice growing in these areas. This was particularly hard-hitting since Mae Tao watershed is one of the most suitable areas of land in Thailand (and the wider region) for rice farming, having fertile soils, a good water supply due to high annual rainfall and an appropriate irrigation system with plenty of small creeks and irrigation canals. The high quality of Mae Tao Jasmine rice had also previously been recognised by its attainment of premium grade runner-up in the national rice product awards in 2002. Following confirmation of the Cd contamination in this area, many government departments and university researchers were asked to characterise the nature and extent of heavy metals contamination and to suggest remedial action. To date, only one plan has been accepted by the Thai government; that is to replace paddy fields with bio-energy crops such as sugarcane and oil palm. Many local farmers are, however, reluctant to grow such crops for various reasons including uneasiness about being disconnected from food production.

Consequently, the question arises; is it possible to maintain the Mao Tao paddy fields without causing any impact on human health? In this project, one set of check-dams, canals and a group of 18 paddy fields near the Mao Tao creek were selected to study the geochemical behavior of Cd as it is transported from the creek to fields. Our initial results have confirmed that high concentrations of Cd are present in some of the paddy field soils with the highest values (up to ~88 mg kg-1) being obtained for fields furthest from the main creek. These fields were also the most low-lying and it was established from interviews with the field owners that the 0-25 cm topsoil had been transported from the fields nearest the irrigation creek to the lowest lying fields for water management reasons. Consequently, this may account for the high concentrations of Cd now present in the fields furthest from the creek.

Having established the extent and location of the contamination, it is important to assess its availability to the rice plants as this will have a major influence on the potential impact on human health. Initial experiments have involved the use of sequential chemical extractions to estimate bioavailable Cd in these neutral-basic soils. In moderately contaminated fields, Cd in the exchangeable fraction (extracted by MgCl2 at pH 7) ranged from ~22-45% and that bound to the carbonate fraction (extracted by CH3COONa at pH 4.5) ranged from ~45-72%. In the most heavily Cd-contaminated soils, the proportion in the exchangeable fraction was extremely high (over 70%) and it is predicted that rice grown in these fields will have Cd concentrations in excess of the safe level of 0.2 mg kg‑1.

Following quantification of Cd concentrations in the roots, shoots, husks and rice grain from each of the 18 paddy fields, further work will investigate the key factors controlling uptake of Cd by rice. The overall aim is to find a remedial approach that will minimise transfer of Cd from the soil to the rice grain and that can be readily implemented in Thailand.

 The Mao Tao region is only one example of an ecosystem affected by development activities; it should be viewed, however, as an important case study for developers and regulators to learn from in terms of potential impacts on ecosystems, community food sources and human health.

Peerapat Kosolsaksakul, Margaret C. Graham and John G. Farmer, School of GeoSciences,, University of Edinburgh, EH9 3JJ, UK.

Reference

Simmons, R.W., Pongsakul, P., Saiyasitpanich, D., Klinhoklap. S. Elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice downstream of a zinc mineralized area in Thailand: implications for public health. Environmental Geochemistry and Health (2005) 27: 501-511.

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil 2017-04-19

    Abstract

    A 30-day incubation experiment was conducted using a heavy metal-contaminated mined soil amended with date palm feedstock (FS) and its derivative biochars (BCs) at three pyrolysis temperatures of 300 (BC-300), 500 (BC-500), and 700 °C (BC-700) with different application rates (0.0, 5, 15, and 30 g kg−1) to investigate their short-term effects on soil respiration (CO2–C efflux), microbial biomass carbon (MBC), soil organic carbon (SOC), mobile fraction of heavy metals (Cd, Cu, Pb, Zn, Mn, and Fe), pH, and electrical conductivity (EC). The results showed that FS and BC-300 with increasing addition rate significantly reduced soil pH, whereas SOC, CO2–C efflux, and soil MBC were increased compared to the control. On the contrary, BC-500 and BC-700 increased soil pH at early stage of incubation and have small or no effects on SOC, CO2–C efflux, and MBC. Based on the results, the date palm biochars exhibited much lower cumulative CO2–C efflux than feedstock, even with low-temperature biochar, indicating that BCs have C sequestration potential. Applying BC-700 at 15 and 30 g kg−1 significantly reduced cumulative CO2–C efflux by 21.8 and 45.4% compared to the control, respectively. The incorporation of FS into contaminated soil significantly increased the mobile content of Cd and Mn, but decreased the mobile content of Cu. However, BC-300 significantly reduced the mobile content of Cd, Cu, Pb, and Zn. It could be concluded that low-temperature biochar could be used as a soil amendment for reducing heavy metal mobility in mining contaminated soil in addition to minimize soil CO2–C efflux.

  • Historical record of anthropogenic polycyclic aromatic hydrocarbons in a lake sediment from the southern Tibetan Plateau 2017-04-17

    Abstract

    High-altitude lake sediments can be used as natural archives to reconstruct the history of pollutants. In this work, the temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was determined in a sediment core collected from the southern Tibetan Plateau (TP), which was dated by using the 210Pb dating method and validated with the 137Cs fallout peak. The concentrations of the anthropogenic PAHs (Σ8PAH) in the sediment core ranged from 0.83 to 12 ng/g dw, and the fluxes of the Σ8PAH were in the range of 2.1–27 g/cm2/year. The temporal variations in the concentration and input flux of anthropogenic PAHs were low with little variability before the 1950s, and then gradually increased from the 1950s to the 1980s, and an accelerated increase was observed after the early 1980s. The content of total organic carbon played an insignificant role in affecting the time trends of PAHs in the sediment core. Diagnostic concentration fractions of PAH components indicate PAHs in the lake sediment of the southern TP which are mainly from biomass burning and/or from long-range atmospheric transport.

  • Determination of the potential implementation impact of 2016 ministry of environmental protection generic assessment criteria for potentially contaminated sites in China 2017-04-12

    Abstract

    The Ministry of Environmental Protection of China issued a 3rd draft edition of risk-based Generic Assessment Criteria (the MEP-GAC) in March 2016. Since these will be the first authoritative GAC in China, their implementation is likely to have a significant impact on China’s growing contaminated land management sector. This study aims to determine the potential implementation impact of the MEP-GAC through an in-depth analysis of the management context, land use scenarios, health criteria values adopted and exposure pathways considered. The MEP-GAC have been proposed for two broad categories of land use scenarios for contaminated land risk assessment, and these two categories of land use scenarios need to be further delved, and a MEP-GAC for Chinese cultivated land scenario ought to be developed, to ensure human health protection of Chinese farmers. The MEP-GAC have adopted 10−6 as the acceptable lifetime cancer risk, given the widespread extent and severe level of land contamination in China, consideration should be given to the decision on excess lifetime cancer risk of 10−5. During risk assessment process in practice, it is better to review the 20% TDI against local circumstances to determine their suitability before adopting it. The MEP-GAC are based on a SOM value of 1%, for regions with particularly high SOM, it might be necessary to develop regional GAC, due to SOM’s significant impact on the GAC developed. An authoritative risk assessment model developed based on HJ25.3-2014 would help facilitate the DQRA process in practice. The MEP-GAC could better reflect the likely exposures of China’s citizens due to vapour inhalation by using characteristics of Chinese exposure scenarios, including China-generic building stock, as inputs into the Johnson and Ettinger model as opposed to adoption of the US EPA parameters. The MEP-GAC once implemented will set the trajectory for the development of the investigation, assessment and remediation of land contamination for years.