SEGH Articles

Cadmium (Cd) contamination of paddy fields in Mao Tao, Western Thailand

01 September 2011
Peerapat Kosolsaksakul is a 2nd year PhD student who was winner of the Springer / Hemphill Best Poster presentation at SEGH 2011.

 

My PhD research is in its second year at the University of Edinburgh studying the Geochemical Behaviour of Cd in a Contaminated Watershed, Tak Province, Western Thailand.

During the 1960-70s, major projects to develop chemically supported agriculture, infrastructure, industrial estates and mining were launched in order to enhance the Thai economy. Unfortunately, in the areas where these projects took place, this has led to ecosystem and, in some cases, human health deterioration. Over the last decade in particular, there has been an increasing number of biogeochemical studies which aim to provide a better understanding of the changes occurring within the ecosystem, especially in lowland areas which have been contaminated to a high level with potentially toxic heavy elements such as cadmium (Cd). 

One example of such a contaminated area is Mae Tao, a small watershed in Tak province, western Thailand.  In 2003, the International Water Management Institute in collaboration with the Department of Agriculture, Thailand, observed that the concentration of Cd in paddy fields and rice was more than a hundred times the common background values of 0.14 mg kg-1 and 0.2 mg kg-1 for soil and rice, respectively (Simmons, 2005). This caused great concern amongst farmers and local people not only due to the tangible health problems but also to the economic effects, e.g. decreased rice demand and a government policy of not supporting rice growing in these areas. This was particularly hard-hitting since Mae Tao watershed is one of the most suitable areas of land in Thailand (and the wider region) for rice farming, having fertile soils, a good water supply due to high annual rainfall and an appropriate irrigation system with plenty of small creeks and irrigation canals. The high quality of Mae Tao Jasmine rice had also previously been recognised by its attainment of premium grade runner-up in the national rice product awards in 2002. Following confirmation of the Cd contamination in this area, many government departments and university researchers were asked to characterise the nature and extent of heavy metals contamination and to suggest remedial action. To date, only one plan has been accepted by the Thai government; that is to replace paddy fields with bio-energy crops such as sugarcane and oil palm. Many local farmers are, however, reluctant to grow such crops for various reasons including uneasiness about being disconnected from food production.

Consequently, the question arises; is it possible to maintain the Mao Tao paddy fields without causing any impact on human health? In this project, one set of check-dams, canals and a group of 18 paddy fields near the Mao Tao creek were selected to study the geochemical behavior of Cd as it is transported from the creek to fields. Our initial results have confirmed that high concentrations of Cd are present in some of the paddy field soils with the highest values (up to ~88 mg kg-1) being obtained for fields furthest from the main creek. These fields were also the most low-lying and it was established from interviews with the field owners that the 0-25 cm topsoil had been transported from the fields nearest the irrigation creek to the lowest lying fields for water management reasons. Consequently, this may account for the high concentrations of Cd now present in the fields furthest from the creek.

Having established the extent and location of the contamination, it is important to assess its availability to the rice plants as this will have a major influence on the potential impact on human health. Initial experiments have involved the use of sequential chemical extractions to estimate bioavailable Cd in these neutral-basic soils. In moderately contaminated fields, Cd in the exchangeable fraction (extracted by MgCl2 at pH 7) ranged from ~22-45% and that bound to the carbonate fraction (extracted by CH3COONa at pH 4.5) ranged from ~45-72%. In the most heavily Cd-contaminated soils, the proportion in the exchangeable fraction was extremely high (over 70%) and it is predicted that rice grown in these fields will have Cd concentrations in excess of the safe level of 0.2 mg kg‑1.

Following quantification of Cd concentrations in the roots, shoots, husks and rice grain from each of the 18 paddy fields, further work will investigate the key factors controlling uptake of Cd by rice. The overall aim is to find a remedial approach that will minimise transfer of Cd from the soil to the rice grain and that can be readily implemented in Thailand.

 The Mao Tao region is only one example of an ecosystem affected by development activities; it should be viewed, however, as an important case study for developers and regulators to learn from in terms of potential impacts on ecosystems, community food sources and human health.

Peerapat Kosolsaksakul, Margaret C. Graham and John G. Farmer, School of GeoSciences,, University of Edinburgh, EH9 3JJ, UK.

Reference

Simmons, R.W., Pongsakul, P., Saiyasitpanich, D., Klinhoklap. S. Elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice downstream of a zinc mineralized area in Thailand: implications for public health. Environmental Geochemistry and Health (2005) 27: 501-511.

 

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Status, source identification, and health risks of potentially toxic element concentrations in road dust in a medium-sized city in a developing country 2017-09-19

    Abstract

    This study aims to determine the status of potentially toxic element concentrations of road dust in a medium-sized city (Rawang, Malaysia). This study adopts source identification via enrichment factor, Pearson correlation analysis, and Fourier spectral analysis to identify sources of potentially toxic element concentrations in road dust in Rawang City, Malaysia. Health risk assessment was conducted to determine potential health risks (carcinogenic and non-carcinogenic risks) among adults and children via multiple pathways (i.e., ingestion, dermal contact, and inhalation). Mean of potentially toxic element concentrations were found in the order of Pb > Zn > Cr(IV) > Cu > Ni > Cd > As > Co. Source identification revealed that Cu, Cd, Pb, Zn, Ni, and Cr(IV) are associated with anthropogenic sources in industrial and highly populated areas in northern and southern Rawang, cement factories in southern Rawang, as well as the rapid development and population growth in northwestern Rawang, which have resulted in high traffic congestion. Cobalt, Fe, and As are related to geological background and lithologies in Rawang. Pathway orders for both carcinogenic and non-carcinogenic risks are ingestion, dermal contact, and inhalation, involving adults and children. Non-carcinogenic health risks in adults were attributed to Cr(IV), Pb, and Cd, whereas Cu, Cd, Cr(IV), Pb, and Zn were found to have non-carcinogenic health risks for children. Cd, Cr(IV), Pb, and As may induce carcinogenic risks in adults and children, and the total lifetime cancer risk values exceeded incremental lifetime.

  • Erratum to: Preliminary assessment of surface soil lead concentrations in Melbourne, Australia 2017-09-11
  • In vivo uptake of iodine from a Fucus serratus Linnaeus seaweed bath: does volatile iodine contribute? 2017-09-02

    Abstract

    Seaweed baths containing Fucus serratus Linnaeus are a rich source of iodine which has the potential to increase the urinary iodide concentration (UIC) of the bather. In this study, the range of total iodine concentration in seawater (22–105 µg L−1) and seaweed baths (808–13,734 µg L−1) was measured over 1 year. The seasonal trend shows minimum levels in summer (May–July) and maximum in winter (November–January). The bathwater pH was found to be acidic, average pH 5.9 ± 0.3. An in vivo study with 30 volunteers was undertaken to measure the UIC of 15 bathers immersed in the bath and 15 non-bathers sitting adjacent to the bath. Their UIC was analysed pre- and post-seaweed bath and corrected for creatinine concentration. The corrected UIC of the population shows an increase following the seaweed bath from a pre-treatment median of 76 µg L−1 to a post-treatment median of 95 µg L−1. The pre-treatment UIC for both groups did not indicate significant difference (p = 0.479); however, the post-treatment UIC for both did (p = 0.015) where the median bather test UIC was 86 µg L−1 and the non-bather UIC test was 105 µg L−1. Results indicate the bath has the potential to increase the UIC by a significant amount and that inhalation of volatile iodine is a more significant contributor to UIC than previously documented.