SEGH Articles

Cadmium (Cd) contamination of paddy fields in Mao Tao, Western Thailand

01 September 2011
Peerapat Kosolsaksakul is a 2nd year PhD student who was winner of the Springer / Hemphill Best Poster presentation at SEGH 2011.

 

My PhD research is in its second year at the University of Edinburgh studying the Geochemical Behaviour of Cd in a Contaminated Watershed, Tak Province, Western Thailand.

During the 1960-70s, major projects to develop chemically supported agriculture, infrastructure, industrial estates and mining were launched in order to enhance the Thai economy. Unfortunately, in the areas where these projects took place, this has led to ecosystem and, in some cases, human health deterioration. Over the last decade in particular, there has been an increasing number of biogeochemical studies which aim to provide a better understanding of the changes occurring within the ecosystem, especially in lowland areas which have been contaminated to a high level with potentially toxic heavy elements such as cadmium (Cd). 

One example of such a contaminated area is Mae Tao, a small watershed in Tak province, western Thailand.  In 2003, the International Water Management Institute in collaboration with the Department of Agriculture, Thailand, observed that the concentration of Cd in paddy fields and rice was more than a hundred times the common background values of 0.14 mg kg-1 and 0.2 mg kg-1 for soil and rice, respectively (Simmons, 2005). This caused great concern amongst farmers and local people not only due to the tangible health problems but also to the economic effects, e.g. decreased rice demand and a government policy of not supporting rice growing in these areas. This was particularly hard-hitting since Mae Tao watershed is one of the most suitable areas of land in Thailand (and the wider region) for rice farming, having fertile soils, a good water supply due to high annual rainfall and an appropriate irrigation system with plenty of small creeks and irrigation canals. The high quality of Mae Tao Jasmine rice had also previously been recognised by its attainment of premium grade runner-up in the national rice product awards in 2002. Following confirmation of the Cd contamination in this area, many government departments and university researchers were asked to characterise the nature and extent of heavy metals contamination and to suggest remedial action. To date, only one plan has been accepted by the Thai government; that is to replace paddy fields with bio-energy crops such as sugarcane and oil palm. Many local farmers are, however, reluctant to grow such crops for various reasons including uneasiness about being disconnected from food production.

Consequently, the question arises; is it possible to maintain the Mao Tao paddy fields without causing any impact on human health? In this project, one set of check-dams, canals and a group of 18 paddy fields near the Mao Tao creek were selected to study the geochemical behavior of Cd as it is transported from the creek to fields. Our initial results have confirmed that high concentrations of Cd are present in some of the paddy field soils with the highest values (up to ~88 mg kg-1) being obtained for fields furthest from the main creek. These fields were also the most low-lying and it was established from interviews with the field owners that the 0-25 cm topsoil had been transported from the fields nearest the irrigation creek to the lowest lying fields for water management reasons. Consequently, this may account for the high concentrations of Cd now present in the fields furthest from the creek.

Having established the extent and location of the contamination, it is important to assess its availability to the rice plants as this will have a major influence on the potential impact on human health. Initial experiments have involved the use of sequential chemical extractions to estimate bioavailable Cd in these neutral-basic soils. In moderately contaminated fields, Cd in the exchangeable fraction (extracted by MgCl2 at pH 7) ranged from ~22-45% and that bound to the carbonate fraction (extracted by CH3COONa at pH 4.5) ranged from ~45-72%. In the most heavily Cd-contaminated soils, the proportion in the exchangeable fraction was extremely high (over 70%) and it is predicted that rice grown in these fields will have Cd concentrations in excess of the safe level of 0.2 mg kg‑1.

Following quantification of Cd concentrations in the roots, shoots, husks and rice grain from each of the 18 paddy fields, further work will investigate the key factors controlling uptake of Cd by rice. The overall aim is to find a remedial approach that will minimise transfer of Cd from the soil to the rice grain and that can be readily implemented in Thailand.

 The Mao Tao region is only one example of an ecosystem affected by development activities; it should be viewed, however, as an important case study for developers and regulators to learn from in terms of potential impacts on ecosystems, community food sources and human health.

Peerapat Kosolsaksakul, Margaret C. Graham and John G. Farmer, School of GeoSciences,, University of Edinburgh, EH9 3JJ, UK.

Reference

Simmons, R.W., Pongsakul, P., Saiyasitpanich, D., Klinhoklap. S. Elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice downstream of a zinc mineralized area in Thailand: implications for public health. Environmental Geochemistry and Health (2005) 27: 501-511.

 

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Biochar-based constructed wetlands to treat reverse osmosis rejected concentrates in chronic kidney disease endemic areas in Sri Lanka 2017-12-01

    Abstract

    The objectives were to investigate the potential remedial measures for reverse osmosis (RO) rejected water through constructed wetlands (CWs) with low-cost materials in the media established in chronic kidney disease of unknown etiology (CKDu) prevalent area in Sri Lanka. A pilot-scale surface and subsurface water CWs were established at the Medawachchiya community-based RO water supply unit. Locally available soil, calicut tile and biochar were used in proportions of 81, 16.5 and 2.5% (w/w), respectively, as filter materials in the subsurface. Vetiver grass and Scirpus grossus were selected for subsurface wetland while water lettuce and water hyacinth were chosen for free water surface CWs. Results showed that the CKDu sensitive parameters; total dissolved solids, hardness, total alkalinity and fluoride were reduced considerably (20–85%) and most met desirable levels of stipulated ambient standards. Biochar seemed to play a major role in removing fluoride from the system which may be due to the existing and adsorbed K+, Ca+2, Mg+2, etc. on the biochar surface via chemisorption. The least reduction was observed for alkalinity. This study indicated potential purification of aforesaid ions in water which are considerably present in RO rejection. Therefore, the invented bio-geo constructed wetland can be considered as a sustainable, economical and effective option for reducing high concentrations of CKDu sensitive parameters in RO rejected water before discharging into the inland waters.

  • Medical geology of endemic goiter in Kalutara, Sri Lanka; distribution and possible causes 2017-12-01

    Abstract

    This study assesses the distribution of goiter in the Kalutara District, Sri Lanka in order to find causative factors for the occurrence of goiter even after the salt iodization. A questionnaire survey was conducted at the household level and at the same time iodine and selenium levels of the water sources were analyzed. Questionnaire survey results indicated the highest numbers of goiter patients in the northern part where the lowest were found in the southern sector which may be due to the presence of acid sulfate soils. Females were more susceptible and it even showed a transmittance between generations. Average iodine concentrations in subsurface water of goiter endemic regions are 28.25 ± 15.47 μg/L whereas non-goiter regions show identical values at 24.74 ± 18.29 μg/L. Surface water exhibited relatively high values at 30.87 ± 16.13 μg/L. Endemic goiter was reported in some isolated patches where iodine and selenium concentrations low, latter was <10 μg/L. The formation of acid sulfate soils in the marshy lands in Kalutara district may lead to transformation of biological available iodine oxidation into volatile iodine by humic substances, at the same time organic matter rich peaty soil may have strong held of iodine and selenium which again induced by low pH and high temperature were suggested as the instrumental factors in the endemic goiter in Kalutara district. Hence, geochemical features such as soil pH, organic matter and thick lateritic cap in the Kalutara goiter endemic area play a role in controlling the available selenium and iodine for food chain through plant uptake and in water.

  • Nickel accumulation in paddy rice on serpentine soils containing high geogenic nickel contents in Taiwan 2017-12-01

    Abstract

    We investigated the extractability of nickel (Ni) in serpentine soils collected from rice paddy fields in eastern Taiwan to evaluate the bioavailability of Ni in the soils as well as for demonstrating the health risks of Ni in rice. Total Ni concentrations in the soils ranged were 70.2–2730 mg/kg (mean, 472 mg/kg), greatly exceeding the natural background content and soil control standard in Taiwan. Available Ni concentration only accounts for <10% of total soil Ni content; 0.1 N HCl-extractable Ni was the more suitable index for Ni bioavailability in the soil to rice than was diethylenetriaminepentaacetic acid (DTPA)-extractable Ni. The accumulation ability of rice roots was much higher than that of its shoots; however, compared with those reported previously, our brown and polished rice samples contained much higher Ni concentrations, within the ranges of 1.50–4.53 and 2.45–5.54 mg/kg, respectively. On the basis of the provisional tolerable Ni intake for adults recommended by the World Health Organization (WHO), daily consumption of this rice can result in an excessive Ni intake.