SEGH Articles

Carbon and Contaminant Trace Metal Biogeochemistry in Surficial Organic-rich Terrestrial Systems

01 September 2011
David Blair was the runnner up for the Springer / Hemphill Best Oral presentation at SEGH 2011.


David Blair is a third year PhD student studying the "Biogeochemical behaviour of Pb and Hg in peat and forest soils; degradation of organic matter in peat and forest soils" at the University of Edinburgh. 

Atmospheric deposition, especially since the onset of the Industrial Revolution, has resulted in markedly increased inventories of pollutants such as lead (Pb) and mercury (Hg) in UK peats and organic-rich soils. Moreover, ombrotrophic peat bogs, which receive all their nutrients (and pollutants) from the atmosphere, provide a historical record of deposition for elements, e.g. Pb and Hg, that are immobilised within the peat solid phase. Although the same may be true for some organic-rich soil systems, vertical transport of Pb within forest soil systems can perturb temporal records. Nevertheless, forest soils still act as a sink for atmospheric Pb albeit that some is transferred to deeper horizons of the soil.  The longer term picture may, however, be affected by processes which lead to degradation of the OM, e.g. warming and drying out of peat bogs and surface soils as a result of climatic change and/or natural diagenetic processes, since these may release Pb into the aqueous phase and volatile Hg species into the atmosphere. The associations and speciation of Pb and Hg within peats and organic-rich soils are not well understood but are central to an improved understanding of the potential for release of such pollutants into the hydrosphere and atmosphere.

This project has focused on Pb and Hg associations and speciation within near-surface peats and forest soils. Due to the organic-rich nature of the solid matrix in such systems, research in this area has typically focused on solid phase metal-organic matter interactions. Recent laboratory experiments, however, have shown that, in addition to organic matter, iron (Fe) oxides may also play an important role in determining the association of metals within American forest soils (e.g. Schroth et al., 2008).  For our research work, two ombrotrophic peat bogs, one minerotrophic bog and one forest soil site, all in central or south-eastern Scotland, were selected. A common characteristic was the high organic matter content of the solid phase matrix but the minerotrophic bog and especially the forest soil had higher mineral contents (~10% and ~30-60% of total solids, respectively).

Preliminary work has shown that a large proportion (~40-99%, depending on vertical depth) of Pb in ombrotrophic peat was extracted in association with humic substances. The lower values for Pb-humic association were obtained for the near-surface regions where there was intact plant material which had not yet undergone the full humification process. Fe was also associated with the humic material but no Fe-rich mineral nodules were detected by SEM-EDX. In addition, it has been shown that Pb associations in the forest soils differed from those in the peat bog. With respect to Hg, between-site differences in speciation were observed. For example, Hg2+ represents <25% of the total Hg species in the top 10 cm of ombrotrophic peat but >50% of the total present in forest soil.

As outlined above, pollutant sinks such as peat bogs and forest soils may undergo long-term physical and chemical transformations that could cause previously sequestered pollutants to be released into other environmental compartments.  Better predictions of the ultimate fate of heavy metal contaminants such as Pb and Hg may be made through thorough understanding of the forms in which they may be released. In this way, the risks to ecosystem and indeed human health posed by such Pb and Hg reservoirs may be more accurately assessed.

David Blair, School of Geosciences, University of Edinburgh.


A.W. Schroth, B.C. Bostick, J.M. Kaste, A.J. Friedland., Lead sequestration and species redistribution during soil organic matter decomposition,  Environ. Sci. Technol. 2008;42:3627-33.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt 2020-01-23


    The steady increase in the world’s population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.

    Graphic abstract

  • Plasticizers and bisphenol A in Adyar and Cooum riverine sediments, India: occurrences, sources and risk assessment 2020-01-23


    Adyar and Cooum, the two rivers intersecting Chennai city, are exposed to serious pollution due to the release of large quantities of dumped waste, untreated wastewater and sewage. Sediments can act as repository for emerging organic contaminants. Hence, we have monitored the occurrence and risk associated with plasticizers [six phthalic acid esters (PAEs), bis(2-ethyl hexyl adipate) (DEHA)] and bisphenol A (BPA) in surface riverine sediments of Adyar and Cooum rivers from residential/commercial, industrial and electronic waste recycling sites. Σ7plasticizers (PAEs + DEHA) in the Adyar riverine sediment (ARS) and Cooum riverine sediment (CRS) varied between 51.82–1796 and 28.13–856 ng/g, respectively. More than three-fourth of Σ7plasticizers came from bis(2-ethylhexyl) phthalate (DEHP), in accordance with the high production and usage of this compound. BPA varied between 10.70–2026 and 7.58–1398 ng/g in ARS and CRS, respectively. Average concentrations of plasticizers and BPA were four times higher in electronic waste (e-waste) recycling sites when compared with industrial and residential/commercial sites. BPA and DEHP showed a strong and significant correlation (R2 = 0.7; p < 0.01) in the e-waste sites thereby indicating common source types. Sites present at close proximity to raw sewage pumping stations contributed to 70% of the total BPA observed in this study. For the derived pore water concentration of plasticizers and BPA, the ecotoxicological risk has been found to be higher in ARS over CRS. However, sediment concentrations in all the sites of ARS and CRS were much below the recommended serious risk concentration for human (SRChuman) and serious risk concentration for ecotoxicological (SRCeco).

  • Distribution of metal(loid)s in particle size fraction in urban soil and street dust: influence of population density 2020-01-18


    Assessment of street dust is an invaluable approach for monitoring atmospheric pollution. Little information is available on the size distribution of contaminants in street dusts and urban soils, and it is not known how the population density would influence them. This research was carried out to assess the size distribution of trace metal(loid)s in street dust and urban soil, and to understand how population density might influence the size-resolved concentration of metal(loid)s. Three urban areas with a high, medium and low population density and a natural area were selected and urban soil and street dust sampled. They were fractionated into 8 size fractions: 2000–850, 850–180, 180–106, 106–50, 50–20, 20–10, 10–2, and < 2 µm. The concentration of Pb, Zn, Cu, Cd, Cr, Ni, As, and Fe was determined, and enrichment factor and grain size fraction loadings were computed. The results indicated that the concentration of Pb, Zn, Cu, Cd, and Cr was highly size dependent, particularly for particles < 100 µm, especially for street dust. Low concentrations of Ni and As in street dust and urban soil were size and population density independent. Higher size dependency of the metals concentration and the higher degree of elemental enrichment in the street dust fractions than the urban soils indicate higher contribution of human-induced pollution to the dust. Findings also confirm the inevitability of size fractionation when soils or dusts are environmentally assessed, particularly in moderately to highly polluted areas. Otherwise, higher concentrations of certain pollutants in fine-sized particles might be overlooked leading to inappropriate decisions for environmental remediation.