SEGH Articles

Carbon and Contaminant Trace Metal Biogeochemistry in Surficial Organic-rich Terrestrial Systems

01 September 2011
David Blair was the runnner up for the Springer / Hemphill Best Oral presentation at SEGH 2011.


David Blair is a third year PhD student studying the "Biogeochemical behaviour of Pb and Hg in peat and forest soils; degradation of organic matter in peat and forest soils" at the University of Edinburgh. 

Atmospheric deposition, especially since the onset of the Industrial Revolution, has resulted in markedly increased inventories of pollutants such as lead (Pb) and mercury (Hg) in UK peats and organic-rich soils. Moreover, ombrotrophic peat bogs, which receive all their nutrients (and pollutants) from the atmosphere, provide a historical record of deposition for elements, e.g. Pb and Hg, that are immobilised within the peat solid phase. Although the same may be true for some organic-rich soil systems, vertical transport of Pb within forest soil systems can perturb temporal records. Nevertheless, forest soils still act as a sink for atmospheric Pb albeit that some is transferred to deeper horizons of the soil.  The longer term picture may, however, be affected by processes which lead to degradation of the OM, e.g. warming and drying out of peat bogs and surface soils as a result of climatic change and/or natural diagenetic processes, since these may release Pb into the aqueous phase and volatile Hg species into the atmosphere. The associations and speciation of Pb and Hg within peats and organic-rich soils are not well understood but are central to an improved understanding of the potential for release of such pollutants into the hydrosphere and atmosphere.

This project has focused on Pb and Hg associations and speciation within near-surface peats and forest soils. Due to the organic-rich nature of the solid matrix in such systems, research in this area has typically focused on solid phase metal-organic matter interactions. Recent laboratory experiments, however, have shown that, in addition to organic matter, iron (Fe) oxides may also play an important role in determining the association of metals within American forest soils (e.g. Schroth et al., 2008).  For our research work, two ombrotrophic peat bogs, one minerotrophic bog and one forest soil site, all in central or south-eastern Scotland, were selected. A common characteristic was the high organic matter content of the solid phase matrix but the minerotrophic bog and especially the forest soil had higher mineral contents (~10% and ~30-60% of total solids, respectively).

Preliminary work has shown that a large proportion (~40-99%, depending on vertical depth) of Pb in ombrotrophic peat was extracted in association with humic substances. The lower values for Pb-humic association were obtained for the near-surface regions where there was intact plant material which had not yet undergone the full humification process. Fe was also associated with the humic material but no Fe-rich mineral nodules were detected by SEM-EDX. In addition, it has been shown that Pb associations in the forest soils differed from those in the peat bog. With respect to Hg, between-site differences in speciation were observed. For example, Hg2+ represents <25% of the total Hg species in the top 10 cm of ombrotrophic peat but >50% of the total present in forest soil.

As outlined above, pollutant sinks such as peat bogs and forest soils may undergo long-term physical and chemical transformations that could cause previously sequestered pollutants to be released into other environmental compartments.  Better predictions of the ultimate fate of heavy metal contaminants such as Pb and Hg may be made through thorough understanding of the forms in which they may be released. In this way, the risks to ecosystem and indeed human health posed by such Pb and Hg reservoirs may be more accurately assessed.

David Blair, School of Geosciences, University of Edinburgh.


A.W. Schroth, B.C. Bostick, J.M. Kaste, A.J. Friedland., Lead sequestration and species redistribution during soil organic matter decomposition,  Environ. Sci. Technol. 2008;42:3627-33.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil 2017-04-19


    A 30-day incubation experiment was conducted using a heavy metal-contaminated mined soil amended with date palm feedstock (FS) and its derivative biochars (BCs) at three pyrolysis temperatures of 300 (BC-300), 500 (BC-500), and 700 °C (BC-700) with different application rates (0.0, 5, 15, and 30 g kg−1) to investigate their short-term effects on soil respiration (CO2–C efflux), microbial biomass carbon (MBC), soil organic carbon (SOC), mobile fraction of heavy metals (Cd, Cu, Pb, Zn, Mn, and Fe), pH, and electrical conductivity (EC). The results showed that FS and BC-300 with increasing addition rate significantly reduced soil pH, whereas SOC, CO2–C efflux, and soil MBC were increased compared to the control. On the contrary, BC-500 and BC-700 increased soil pH at early stage of incubation and have small or no effects on SOC, CO2–C efflux, and MBC. Based on the results, the date palm biochars exhibited much lower cumulative CO2–C efflux than feedstock, even with low-temperature biochar, indicating that BCs have C sequestration potential. Applying BC-700 at 15 and 30 g kg−1 significantly reduced cumulative CO2–C efflux by 21.8 and 45.4% compared to the control, respectively. The incorporation of FS into contaminated soil significantly increased the mobile content of Cd and Mn, but decreased the mobile content of Cu. However, BC-300 significantly reduced the mobile content of Cd, Cu, Pb, and Zn. It could be concluded that low-temperature biochar could be used as a soil amendment for reducing heavy metal mobility in mining contaminated soil in addition to minimize soil CO2–C efflux.

  • Historical record of anthropogenic polycyclic aromatic hydrocarbons in a lake sediment from the southern Tibetan Plateau 2017-04-17


    High-altitude lake sediments can be used as natural archives to reconstruct the history of pollutants. In this work, the temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was determined in a sediment core collected from the southern Tibetan Plateau (TP), which was dated by using the 210Pb dating method and validated with the 137Cs fallout peak. The concentrations of the anthropogenic PAHs (Σ8PAH) in the sediment core ranged from 0.83 to 12 ng/g dw, and the fluxes of the Σ8PAH were in the range of 2.1–27 g/cm2/year. The temporal variations in the concentration and input flux of anthropogenic PAHs were low with little variability before the 1950s, and then gradually increased from the 1950s to the 1980s, and an accelerated increase was observed after the early 1980s. The content of total organic carbon played an insignificant role in affecting the time trends of PAHs in the sediment core. Diagnostic concentration fractions of PAH components indicate PAHs in the lake sediment of the southern TP which are mainly from biomass burning and/or from long-range atmospheric transport.

  • Determination of the potential implementation impact of 2016 ministry of environmental protection generic assessment criteria for potentially contaminated sites in China 2017-04-12


    The Ministry of Environmental Protection of China issued a 3rd draft edition of risk-based Generic Assessment Criteria (the MEP-GAC) in March 2016. Since these will be the first authoritative GAC in China, their implementation is likely to have a significant impact on China’s growing contaminated land management sector. This study aims to determine the potential implementation impact of the MEP-GAC through an in-depth analysis of the management context, land use scenarios, health criteria values adopted and exposure pathways considered. The MEP-GAC have been proposed for two broad categories of land use scenarios for contaminated land risk assessment, and these two categories of land use scenarios need to be further delved, and a MEP-GAC for Chinese cultivated land scenario ought to be developed, to ensure human health protection of Chinese farmers. The MEP-GAC have adopted 10−6 as the acceptable lifetime cancer risk, given the widespread extent and severe level of land contamination in China, consideration should be given to the decision on excess lifetime cancer risk of 10−5. During risk assessment process in practice, it is better to review the 20% TDI against local circumstances to determine their suitability before adopting it. The MEP-GAC are based on a SOM value of 1%, for regions with particularly high SOM, it might be necessary to develop regional GAC, due to SOM’s significant impact on the GAC developed. An authoritative risk assessment model developed based on HJ25.3-2014 would help facilitate the DQRA process in practice. The MEP-GAC could better reflect the likely exposures of China’s citizens due to vapour inhalation by using characteristics of Chinese exposure scenarios, including China-generic building stock, as inputs into the Johnson and Ettinger model as opposed to adoption of the US EPA parameters. The MEP-GAC once implemented will set the trajectory for the development of the investigation, assessment and remediation of land contamination for years.