SEGH Articles

Carbon and Contaminant Trace Metal Biogeochemistry in Surficial Organic-rich Terrestrial Systems

01 September 2011
David Blair was the runnner up for the Springer / Hemphill Best Oral presentation at SEGH 2011.

 

David Blair is a third year PhD student studying the "Biogeochemical behaviour of Pb and Hg in peat and forest soils; degradation of organic matter in peat and forest soils" at the University of Edinburgh. 

Atmospheric deposition, especially since the onset of the Industrial Revolution, has resulted in markedly increased inventories of pollutants such as lead (Pb) and mercury (Hg) in UK peats and organic-rich soils. Moreover, ombrotrophic peat bogs, which receive all their nutrients (and pollutants) from the atmosphere, provide a historical record of deposition for elements, e.g. Pb and Hg, that are immobilised within the peat solid phase. Although the same may be true for some organic-rich soil systems, vertical transport of Pb within forest soil systems can perturb temporal records. Nevertheless, forest soils still act as a sink for atmospheric Pb albeit that some is transferred to deeper horizons of the soil.  The longer term picture may, however, be affected by processes which lead to degradation of the OM, e.g. warming and drying out of peat bogs and surface soils as a result of climatic change and/or natural diagenetic processes, since these may release Pb into the aqueous phase and volatile Hg species into the atmosphere. The associations and speciation of Pb and Hg within peats and organic-rich soils are not well understood but are central to an improved understanding of the potential for release of such pollutants into the hydrosphere and atmosphere.

This project has focused on Pb and Hg associations and speciation within near-surface peats and forest soils. Due to the organic-rich nature of the solid matrix in such systems, research in this area has typically focused on solid phase metal-organic matter interactions. Recent laboratory experiments, however, have shown that, in addition to organic matter, iron (Fe) oxides may also play an important role in determining the association of metals within American forest soils (e.g. Schroth et al., 2008).  For our research work, two ombrotrophic peat bogs, one minerotrophic bog and one forest soil site, all in central or south-eastern Scotland, were selected. A common characteristic was the high organic matter content of the solid phase matrix but the minerotrophic bog and especially the forest soil had higher mineral contents (~10% and ~30-60% of total solids, respectively).

Preliminary work has shown that a large proportion (~40-99%, depending on vertical depth) of Pb in ombrotrophic peat was extracted in association with humic substances. The lower values for Pb-humic association were obtained for the near-surface regions where there was intact plant material which had not yet undergone the full humification process. Fe was also associated with the humic material but no Fe-rich mineral nodules were detected by SEM-EDX. In addition, it has been shown that Pb associations in the forest soils differed from those in the peat bog. With respect to Hg, between-site differences in speciation were observed. For example, Hg2+ represents <25% of the total Hg species in the top 10 cm of ombrotrophic peat but >50% of the total present in forest soil.

As outlined above, pollutant sinks such as peat bogs and forest soils may undergo long-term physical and chemical transformations that could cause previously sequestered pollutants to be released into other environmental compartments.  Better predictions of the ultimate fate of heavy metal contaminants such as Pb and Hg may be made through thorough understanding of the forms in which they may be released. In this way, the risks to ecosystem and indeed human health posed by such Pb and Hg reservoirs may be more accurately assessed.

David Blair, School of Geosciences, University of Edinburgh.

Reference

A.W. Schroth, B.C. Bostick, J.M. Kaste, A.J. Friedland., Lead sequestration and species redistribution during soil organic matter decomposition,  Environ. Sci. Technol. 2008;42:3627-33.

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Genotoxic effects of PM 10 and PM 2.5 bound metals: metal bioaccessibility, free radical generation, and role of iron 2018-10-09

    Abstract

    The present study was undertaken to examine the possible genotoxicity of ambient particulate matter (PM10 and PM2.5) in Pune city. In both size fractions of PM, Fe was found to be the dominant metal by concentration, contributing 22% and 30% to the total mass of metals in PM10 and PM2.5, respectively. The speciation of soluble Fe in PM10 and PM2.5 was investigated. The average fraction of Fe3+ and Fe2+ concentrations in PM2.5 was 80.6% and 19.3%, respectively, while in PM2.5 this fraction was 71.1% and 29.9%, respectively. The dominance of Fe(III) state in both PM fractions facilitates the generation of hydroxyl radicals (·OH), which can damage deoxyribose nucleic acid (DNA), as was evident from the gel electrophoresis study. The DNA damage by ·OH was supported through the in silico density functional theory (DFT) method. DFT results showed that C8 site of guanine (G)/adenine (A) and C6 site of thymine (T)/cytosine (C) would be energetically more favorable for the attack of hydroxyl radicals, when compared with the C4 and C5 sites. The non-standard Watson–Crick base pairing models of oxidative products of G, A, T and C yield lower-energy conformations than canonical dA:dT and dG:dC base pairing. This study may pave the way to understand the structural consequences of base-mediated oxidative lesions in DNA and its role in human diseases.

  • A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment 2018-10-08

    Abstract

    Airborne particulate matter (PM) that is a heterogeneous mixture of particles with a variety of chemical components and physical features acts as a potential risk to human health. The ability to pose health risk depends upon the size, concentration and chemical composition of the suspended particles. Potential toxic elements (PTEs) associated with PM have multiple sources of origin, and each source has the ability to generate multiple particulate PTEs. In urban areas, automobile, industrial emissions, construction and demolition activities are the major anthropogenic sources of pollution. Fine particles associated with PTEs have the ability to penetrate deep into respiratory system resulting in an increasing range of adverse health effects, at ever-lower concentrations. In-depth investigation of PTEs content and mode of occurrence in PM is important from both environmental and pathological point of view. Considering this air pollution risk, several studies had addressed the issues related to these pollutants in road and street dust, indicating high pollution level than the air quality guidelines. Observed from the literature, particulate PTEs pollution can lead to respiratory symptoms, cardiovascular problems, lungs cancer, reduced lungs function, asthma and severe case mortality. Due to the important role of PM and associated PTEs, detailed knowledge of their impacts on human health is of key importance.

  • Interactions between polycyclic aromatic hydrocarbons and epoxide hydrolase 1 play roles in asthma 2018-10-06

    Abstract

    Asthma, as one of the most common chronic diseases in children and adults, is a consequence of complex gene–environment interactions. Polycyclic aromatic hydrocarbons (PAHs), as a group of widespread environmental organic pollutants, are involved in the development, triggering and pathologic changes of asthma. Various previous studies reported the critical roles of PAHs in immune changes, oxidative stress and environment–gene interactions of asthma. EPHX1 (the gene of epoxide hydrolase 1, an enzyme mediating human PAH metabolism) had a possible association with asthma by influencing PAH metabolism. This review summarized that (1) the roles of PAHs in asthma—work as risk factors; (2) the possible mechanisms involved in PAH-related asthma—through immunologic and oxidative stress changes; (3) the interactions between PAHs and EPHX1 involved in asthma—enzymatic activity of epoxide hydrolase 1, which affected by EPHX1 genotypes/SNPs/diplotypes, could influence human PAH metabolism and people’s vulnerability to PAH exposure. This review provided a better understanding of the above interactions and underlying mechanisms for asthma which help to raise public’s concern on PAH control and develop strategies for individual asthma primary prevention.