SEGH Articles

Centre for Environmental Geochemistry

15 June 2014
The Centre's research will focus on building established collaborations between the University of Nottingham and the British Geological Survey (across Departments, Schools and Faculties).

The Centre for Environmental Geochemistry combines the University of Nottingham's (UoN) and the British Geological Survey's (BGS) strengths, focussing on the use of geochemistry in research, training and teaching around reconstructing past environmental and climate change, biogeochemical cycling including pollution typing/provenance and the use of geochemical tools for research into the subsurface. The Centre's research will focus on building established collaborations between the University and BGS (across Departments, Schools and Faculties).

Photo shows Prof David Greenaway (UoN) and Prof John Ludden (BGS) signing the collaboration agreement

The Centre is initially focussed around three laboratories in BGS: the Stable Isotope Laboratory (part of the NERC Isotope Geosciences Facilities, governed by BGS) led by Professor Melanie Leng; the Inorganic Geochemistry Laboratory led by Dr Michael Watts and the Organic Geochemistry Laboratory led by Dr Christopher Vane. The three main areas within the university are the School of Biosciences, the School of Geography, and the Faculty of Engineering.

More information can be found at www.environmentalgeochemistry.org  

The Centre for Environmental Geohemistry will focus initially on the following topics:

Past Environmental and Climate Change

The Centre will use geochemistry to understand and measure climate and environmental change over decadal to millennial timescales both in the recent and geological past. This enables the understanding of local and regional impacts of climate variability, changing land and river management practices on hydrological processes, impacts of pollution, effects on sea level etc. The Centre will invest significantly to extend geochemical tracer work into several global projects including investigating current and past freshwater contributions into the polar oceans and effects on ocean circulation; climate influences over significant land masses (e.g. tropical Americas, Northern Europe) over time and effects on plant and animal migration and endemism, desertification/water resources etc; climate-driven human evolution, innovation, and dispersal through Africa and understanding the role of mangrove and wetland habitats as sources/sinks of carbon under different climate regimes as well as developing geochemical techniques. Several of these projects will fall within the remit of NERC, the International Continental scientific Drilling Program (ICDP) and the International Ocean Discovery Program (IODP).

Biogeochemical cycling

Biogeochemical cycling of nutrients and pollutants is a key research area especially in relation to food security and understanding land-use change, in particular urban agriculture and protecting food production from exposure to potentially harmful contaminants; efficient application of fertilisers/agricultural techniques and the understanding of mineral deficiency in sub-Saharan African and Indian sub-continental soils. Improving our understanding of the linkages between soil composition/inputs, plant uptake of minerals/pollutants and subsequent impact on dietary and health status requires investigation and can be done using joint BGS-University of Nottingham expertise. This type of research influences regional government policy especially with regard to remedial strategies the most significant of which concerns mineral biofortification which has huge impacts on improving people's lives in developing countries.

Geochemistry and the subsurface

An ambition of the new centre will be to build on the geochemistry, geomechanical, geological, soil and biogeochemical expertise in BGS and University of Nottingham to research practical problems relating to use of the shallow and deep subsurface in developing resources. This project will build on a BGS-led infrastructure project 'Energy test bed: multicomponent sub-surface monitoring to underpin the UK energy industry', a research infrastructure to allow the subsurface to be monitored at time scales that are consistent with our use of the subsurface, to increase efficiency and environmental sustainability and to act as a catalyst to stimulate investment and speed new technology energy options to commercialisation. In particular research will look towards understanding the impact of deep shale gas drilling and hydraulic fracturing on the quality of shallow groundwater and surface water; studies on the impact of coal combustion products on the environment both from surface and subsurface operations; contaminants associated with mining in valley fill head waters; and water usage implications of widespread carbon capture and storage (CCS) and shale gas.


by Dr Michael Watts, Head of Inorganic Geochemistry, BGS.

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Genotoxic effects of PM 10 and PM 2.5 bound metals: metal bioaccessibility, free radical generation, and role of iron 2018-10-09

    Abstract

    The present study was undertaken to examine the possible genotoxicity of ambient particulate matter (PM10 and PM2.5) in Pune city. In both size fractions of PM, Fe was found to be the dominant metal by concentration, contributing 22% and 30% to the total mass of metals in PM10 and PM2.5, respectively. The speciation of soluble Fe in PM10 and PM2.5 was investigated. The average fraction of Fe3+ and Fe2+ concentrations in PM2.5 was 80.6% and 19.3%, respectively, while in PM2.5 this fraction was 71.1% and 29.9%, respectively. The dominance of Fe(III) state in both PM fractions facilitates the generation of hydroxyl radicals (·OH), which can damage deoxyribose nucleic acid (DNA), as was evident from the gel electrophoresis study. The DNA damage by ·OH was supported through the in silico density functional theory (DFT) method. DFT results showed that C8 site of guanine (G)/adenine (A) and C6 site of thymine (T)/cytosine (C) would be energetically more favorable for the attack of hydroxyl radicals, when compared with the C4 and C5 sites. The non-standard Watson–Crick base pairing models of oxidative products of G, A, T and C yield lower-energy conformations than canonical dA:dT and dG:dC base pairing. This study may pave the way to understand the structural consequences of base-mediated oxidative lesions in DNA and its role in human diseases.

  • A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment 2018-10-08

    Abstract

    Airborne particulate matter (PM) that is a heterogeneous mixture of particles with a variety of chemical components and physical features acts as a potential risk to human health. The ability to pose health risk depends upon the size, concentration and chemical composition of the suspended particles. Potential toxic elements (PTEs) associated with PM have multiple sources of origin, and each source has the ability to generate multiple particulate PTEs. In urban areas, automobile, industrial emissions, construction and demolition activities are the major anthropogenic sources of pollution. Fine particles associated with PTEs have the ability to penetrate deep into respiratory system resulting in an increasing range of adverse health effects, at ever-lower concentrations. In-depth investigation of PTEs content and mode of occurrence in PM is important from both environmental and pathological point of view. Considering this air pollution risk, several studies had addressed the issues related to these pollutants in road and street dust, indicating high pollution level than the air quality guidelines. Observed from the literature, particulate PTEs pollution can lead to respiratory symptoms, cardiovascular problems, lungs cancer, reduced lungs function, asthma and severe case mortality. Due to the important role of PM and associated PTEs, detailed knowledge of their impacts on human health is of key importance.

  • Interactions between polycyclic aromatic hydrocarbons and epoxide hydrolase 1 play roles in asthma 2018-10-06

    Abstract

    Asthma, as one of the most common chronic diseases in children and adults, is a consequence of complex gene–environment interactions. Polycyclic aromatic hydrocarbons (PAHs), as a group of widespread environmental organic pollutants, are involved in the development, triggering and pathologic changes of asthma. Various previous studies reported the critical roles of PAHs in immune changes, oxidative stress and environment–gene interactions of asthma. EPHX1 (the gene of epoxide hydrolase 1, an enzyme mediating human PAH metabolism) had a possible association with asthma by influencing PAH metabolism. This review summarized that (1) the roles of PAHs in asthma—work as risk factors; (2) the possible mechanisms involved in PAH-related asthma—through immunologic and oxidative stress changes; (3) the interactions between PAHs and EPHX1 involved in asthma—enzymatic activity of epoxide hydrolase 1, which affected by EPHX1 genotypes/SNPs/diplotypes, could influence human PAH metabolism and people’s vulnerability to PAH exposure. This review provided a better understanding of the above interactions and underlying mechanisms for asthma which help to raise public’s concern on PAH control and develop strategies for individual asthma primary prevention.