SEGH Articles

Centre for Environmental Geochemistry

15 June 2014
The Centre's research will focus on building established collaborations between the University of Nottingham and the British Geological Survey (across Departments, Schools and Faculties).

The Centre for Environmental Geochemistry combines the University of Nottingham's (UoN) and the British Geological Survey's (BGS) strengths, focussing on the use of geochemistry in research, training and teaching around reconstructing past environmental and climate change, biogeochemical cycling including pollution typing/provenance and the use of geochemical tools for research into the subsurface. The Centre's research will focus on building established collaborations between the University and BGS (across Departments, Schools and Faculties).

Photo shows Prof David Greenaway (UoN) and Prof John Ludden (BGS) signing the collaboration agreement

The Centre is initially focussed around three laboratories in BGS: the Stable Isotope Laboratory (part of the NERC Isotope Geosciences Facilities, governed by BGS) led by Professor Melanie Leng; the Inorganic Geochemistry Laboratory led by Dr Michael Watts and the Organic Geochemistry Laboratory led by Dr Christopher Vane. The three main areas within the university are the School of Biosciences, the School of Geography, and the Faculty of Engineering.

More information can be found at www.environmentalgeochemistry.org  

The Centre for Environmental Geohemistry will focus initially on the following topics:

Past Environmental and Climate Change

The Centre will use geochemistry to understand and measure climate and environmental change over decadal to millennial timescales both in the recent and geological past. This enables the understanding of local and regional impacts of climate variability, changing land and river management practices on hydrological processes, impacts of pollution, effects on sea level etc. The Centre will invest significantly to extend geochemical tracer work into several global projects including investigating current and past freshwater contributions into the polar oceans and effects on ocean circulation; climate influences over significant land masses (e.g. tropical Americas, Northern Europe) over time and effects on plant and animal migration and endemism, desertification/water resources etc; climate-driven human evolution, innovation, and dispersal through Africa and understanding the role of mangrove and wetland habitats as sources/sinks of carbon under different climate regimes as well as developing geochemical techniques. Several of these projects will fall within the remit of NERC, the International Continental scientific Drilling Program (ICDP) and the International Ocean Discovery Program (IODP).

Biogeochemical cycling

Biogeochemical cycling of nutrients and pollutants is a key research area especially in relation to food security and understanding land-use change, in particular urban agriculture and protecting food production from exposure to potentially harmful contaminants; efficient application of fertilisers/agricultural techniques and the understanding of mineral deficiency in sub-Saharan African and Indian sub-continental soils. Improving our understanding of the linkages between soil composition/inputs, plant uptake of minerals/pollutants and subsequent impact on dietary and health status requires investigation and can be done using joint BGS-University of Nottingham expertise. This type of research influences regional government policy especially with regard to remedial strategies the most significant of which concerns mineral biofortification which has huge impacts on improving people's lives in developing countries.

Geochemistry and the subsurface

An ambition of the new centre will be to build on the geochemistry, geomechanical, geological, soil and biogeochemical expertise in BGS and University of Nottingham to research practical problems relating to use of the shallow and deep subsurface in developing resources. This project will build on a BGS-led infrastructure project 'Energy test bed: multicomponent sub-surface monitoring to underpin the UK energy industry', a research infrastructure to allow the subsurface to be monitored at time scales that are consistent with our use of the subsurface, to increase efficiency and environmental sustainability and to act as a catalyst to stimulate investment and speed new technology energy options to commercialisation. In particular research will look towards understanding the impact of deep shale gas drilling and hydraulic fracturing on the quality of shallow groundwater and surface water; studies on the impact of coal combustion products on the environment both from surface and subsurface operations; contaminants associated with mining in valley fill head waters; and water usage implications of widespread carbon capture and storage (CCS) and shale gas.


by Dr Michael Watts, Head of Inorganic Geochemistry, BGS.

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Characteristics of PM 2.5 , CO 2 and particle-number concentration in mass transit railway carriages in Hong Kong 2017-08-01

    Abstract

    Fine particulate matter (PM2.5) levels, carbon dioxide (CO2) levels and particle-number concentrations (PNC) were monitored in train carriages on seven routes of the mass transit railway in Hong Kong between March and May 2014, using real-time monitoring instruments. The 8-h average PM2.5 levels in carriages on the seven routes ranged from 24.1 to 49.8 µg/m3, higher than levels in Finland and similar to those in New York, and in most cases exceeding the standard set by the World Health Organisation (25 µg/m3). The CO2 concentration ranged from 714 to 1801 ppm on four of the routes, generally exceeding indoor air quality guidelines (1000 ppm over 8 h) and reaching levels as high as those in Beijing. PNC ranged from 1506 to 11,570 particles/cm3, lower than readings in Sydney and higher than readings in Taipei. Correlation analysis indicated that the number of passengers in a given carriage did not affect the PM2.5 concentration or PNC in the carriage. However, a significant positive correlation (p < 0.001, R 2 = 0.834) was observed between passenger numbers and CO2 levels, with each passenger contributing approximately 7.7–9.8 ppm of CO2. The real-time measurements of PM2.5 and PNC varied considerably, rising when carriage doors opened on arrival at a station and when passengers inside the carriage were more active. This suggests that air pollutants outside the train and passenger movements may contribute to PM2.5 levels and PNC. Assessment of the risk associated with PM2.5 exposure revealed that children are most severely affected by PM2.5 pollution, followed in order by juveniles, adults and the elderly. In addition, females were found to be more vulnerable to PM2.5 pollution than males (p < 0.001), and different subway lines were associated with different levels of risk.

  • Comparison of chemical compositions in air particulate matter during summer and winter in Beijing, China 2017-08-01

    Abstract

    The development of industry in Beijing, the capital of China, particularly in last decades, has caused severe environmental pollution including particulate matter (PM), dust–haze, and photochemical smog, which has already caused considerable harm to local ecological environment. Thus, in this study, air particle samples were continuously collected in August and December, 2014. And elements (Si, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Cd, Ba, Pb and Ti) and ions ( \({\text{NO}}_{3}^{-}\) , \({\text{SO}}_{4}^{2-}\) , F, Cl, Na+, K+, Mg2+, Ca2+ and \({\text{NH}}_{4}^{+}\) ) were analyzed by inductively coupled plasma mass spectrometer and ion chromatography. According to seasonal changes, discuss the various pollution situations in order to find possible particulate matter sources and then propose appropriate control strategies to local government. The results indicated serious PM and metallic pollution in some sampling days, especially in December. Chemical Mass Balance model revealed central heating activities, road dust and vehicles contribute as main sources, account for 5.84–32.05 % differently to the summer and winter air pollution in 2014.

  • Annual ambient atmospheric mercury speciation measurement from Longjing, a rural site in Taiwan 2017-08-01

    Abstract

    The main purpose of this study was to monitor ambient air particulates and mercury species [RGM, Hg(p), GEM and total mercury] concentrations and dry depositions over rural area at Longjing in central Taiwan during October 2014 to September 2015. In addition, passive air sampler and knife-edge surrogate surface samplers were used to collect the ambient air mercury species concentrations and dry depositions, respectively, in this study. Moreover, direct mercury analyzer was directly used to detect the mercury Hg(p) and RGM concentrations. The result indicated that: (1) The average highest RGM, Hg(p), GEM and total mercury concentrations, and dry depositions were observed in January, prevailing dust storm occurred in winter season was the possible major reason responsible for the above findings. (2) The highest average RGM, Hg(p), GEM and total mercury concentrations, dry depositions and velocities were occurred in winter. This is because that China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. (3) The results indicated that the total mercury ratios of Kaohsiung to that of this study were 5.61. This is because that Kaohsiung has the largest industry density (~60 %) in Taiwan. (4) the USA showed average lower mercury species concentrations when compared to those of the other world countries. The average ratios of China/USA values were 89, 76 and 160 for total mercury, RGM and Hg(p), respectively, during the years of 2000–2012.