SEGH Articles

Centre for Environmental Geochemistry

15 June 2014
The Centre's research will focus on building established collaborations between the University of Nottingham and the British Geological Survey (across Departments, Schools and Faculties).

The Centre for Environmental Geochemistry combines the University of Nottingham's (UoN) and the British Geological Survey's (BGS) strengths, focussing on the use of geochemistry in research, training and teaching around reconstructing past environmental and climate change, biogeochemical cycling including pollution typing/provenance and the use of geochemical tools for research into the subsurface. The Centre's research will focus on building established collaborations between the University and BGS (across Departments, Schools and Faculties).

Photo shows Prof David Greenaway (UoN) and Prof John Ludden (BGS) signing the collaboration agreement

The Centre is initially focussed around three laboratories in BGS: the Stable Isotope Laboratory (part of the NERC Isotope Geosciences Facilities, governed by BGS) led by Professor Melanie Leng; the Inorganic Geochemistry Laboratory led by Dr Michael Watts and the Organic Geochemistry Laboratory led by Dr Christopher Vane. The three main areas within the university are the School of Biosciences, the School of Geography, and the Faculty of Engineering.

More information can be found at www.environmentalgeochemistry.org  

The Centre for Environmental Geohemistry will focus initially on the following topics:

Past Environmental and Climate Change

The Centre will use geochemistry to understand and measure climate and environmental change over decadal to millennial timescales both in the recent and geological past. This enables the understanding of local and regional impacts of climate variability, changing land and river management practices on hydrological processes, impacts of pollution, effects on sea level etc. The Centre will invest significantly to extend geochemical tracer work into several global projects including investigating current and past freshwater contributions into the polar oceans and effects on ocean circulation; climate influences over significant land masses (e.g. tropical Americas, Northern Europe) over time and effects on plant and animal migration and endemism, desertification/water resources etc; climate-driven human evolution, innovation, and dispersal through Africa and understanding the role of mangrove and wetland habitats as sources/sinks of carbon under different climate regimes as well as developing geochemical techniques. Several of these projects will fall within the remit of NERC, the International Continental scientific Drilling Program (ICDP) and the International Ocean Discovery Program (IODP).

Biogeochemical cycling

Biogeochemical cycling of nutrients and pollutants is a key research area especially in relation to food security and understanding land-use change, in particular urban agriculture and protecting food production from exposure to potentially harmful contaminants; efficient application of fertilisers/agricultural techniques and the understanding of mineral deficiency in sub-Saharan African and Indian sub-continental soils. Improving our understanding of the linkages between soil composition/inputs, plant uptake of minerals/pollutants and subsequent impact on dietary and health status requires investigation and can be done using joint BGS-University of Nottingham expertise. This type of research influences regional government policy especially with regard to remedial strategies the most significant of which concerns mineral biofortification which has huge impacts on improving people's lives in developing countries.

Geochemistry and the subsurface

An ambition of the new centre will be to build on the geochemistry, geomechanical, geological, soil and biogeochemical expertise in BGS and University of Nottingham to research practical problems relating to use of the shallow and deep subsurface in developing resources. This project will build on a BGS-led infrastructure project 'Energy test bed: multicomponent sub-surface monitoring to underpin the UK energy industry', a research infrastructure to allow the subsurface to be monitored at time scales that are consistent with our use of the subsurface, to increase efficiency and environmental sustainability and to act as a catalyst to stimulate investment and speed new technology energy options to commercialisation. In particular research will look towards understanding the impact of deep shale gas drilling and hydraulic fracturing on the quality of shallow groundwater and surface water; studies on the impact of coal combustion products on the environment both from surface and subsurface operations; contaminants associated with mining in valley fill head waters; and water usage implications of widespread carbon capture and storage (CCS) and shale gas.


by Dr Michael Watts, Head of Inorganic Geochemistry, BGS.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Ecological impact of the antibiotic ciprofloxacin on microbial community of aerobic activated sludge 2019-08-16

    Abstract

    This study investigated the effects and fate of the antibiotic ciprofloxacin (CIP) at environmentally relevant levels (50–500 µg/L) in activated sludge (AS) microbial communities under aerobic conditions. Exposure to 500 µg/L of CIP decreased species diversity by about 20% and significantly altered the phylogenetic structure of AS communities compared to those of control communities (no CIP exposure), while there were no significant changes upon exposure to 50 µg/L of CIP. Analysis of community composition revealed that exposure to 500 µg/L of CIP significantly reduced the relative abundance of Rhodobacteraceae and Nakamurellaceae by more than tenfold. These species frequently occur in AS communities across many full-scale wastewater treatment plants and are involved in key ecosystem functions (i.e., organic matter and nitrogen removal). Our analyses showed that 50–500 µg/L CIP was poorly removed in AS (about 20% removal), implying that the majority of CIP from AS processes may be released with either their effluents or waste sludge. We therefore strongly recommend further research on CIP residuals and/or post-treatment processes (e.g., anaerobic digestion) for waste streams that may cause ecological risks in receiving water bodies.

  • Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: a high density sampling survey in the Parauapebas basin, Brazilian Amazon 2019-08-10

    Abstract

    A high-density regional-scale soil geochemical survey comprising 727 samples (one sample per each 5 × 5 km grid) was carried out in the Parauapebas sub-basin of the Brazilian Amazonia, under the Itacaiúnas Basin Geochemical Mapping and Background Project. Samples were taken from two depths at each site: surface soil, 0–20 cm and deep soil, 30–50 cm. The ground and sieved (< 75 µm) fraction was digested using aqua regia and analyzed for 51 elements by inductively coupled plasma mass spectrometry (ICPMS). All data were used here, but the principal focus was on the potential toxic elements (PTEs) and Fe and Mn to evaluate the spatial distribution patterns and to establish their geochemical background concentrations in soils. Geochemical maps as well as principal component analysis (PCA) show that the distribution patterns of the elements are very similar between surface and deep soils. The PCA, applied on clr-transformed data, identified four major associations: Fe–Ti–V–Sc–Cu–Cr–Ni (Gp-1); Zr–Hf–U–Nb–Th–Al–P–Mo–Ga (Gp-2); K–Na–Ca–Mg–Ba–Rb–Sr (Gp-3); and La–Ce–Co–Mn–Y–Zn–Cd (Gp-4). Moreover, the distribution patterns of elements varied significantly among the three major geological domains. The whole data indicate a strong imprint of local geological setting in the geochemical associations and point to a dominant geogenic origin for the analyzed elements. Copper and Fe in Gp-1 were enriched in the Carajás basin and are associated with metavolcanic rocks and banded-iron formations, respectively. However, the spatial distribution of Cu is also highly influenced by two hydrothermal mineralized copper belts. Ni–Cr in Gp-1 are highly correlated and spatially associated with mafic and ultramafic units. The Gp-2 is partially composed of high field strength elements (Zr, Hf, Nb, U, Th) that could be linked to occurrences of A-type Neoarchean granites. The Gp-3 elements are mobile elements which are commonly found in feldspars and other rock-forming minerals being liberated by chemical weathering. The background threshold values (BTV) were estimated separately for surface and deep soils using different methods. The ‘75th percentile’, which commonly used for the estimation of the quality reference values (QRVs) following the Brazilian regulation, gave more restrictive or conservative (low) BTVs, while the ‘MMAD’ was more realistic to define high BTVs that can better represent the so-called mineralized/normal background. Compared with CONAMA Resolution (No. 420/2009), the conservative BTVs of most of the toxic elements were below the prevention limits (PV), except Cu, but when the high BTVs are considered, Cu, Co, Cr and Ni exceeded the PV limits. The degree of contamination (Cdeg), based on the conservative BTVs, indicates low contamination, except in the Carajás basin, which shows many anomalies and had high contamination mainly from Cu, Cr and Ni, but this is similar between surface and deep soils indicating that the observed high anomalies are strictly related to geogenic control. This is supported when the Cdeg is calculated using the high BTVs, which indicates low contamination. This suggests that the use of only conservative BTVs for the entire region might overestimate the significance of anthropogenic contamination; thus, we suggest the use of high BTVs for effective assessment of soil contamination in this region. The methodology and results of this study may help developing strategies for geochemical mapping in other Carajás soils or in other Amazonian soils with similar characteristics.

  • Uptake of Cd, Pb, and Ni by Origanum syriacum produced in Lebanon 2019-08-06

    Abstract

    Trace metals are found naturally in soil. However, the increase in industrial and agricultural polluting activities has increased trace metal contamination and raised high concerns in the public health sector. The study was conducted on Origanum syriacum, one of the most consumed herbs in the Middle East, and was divided into three parts. (1) Pot experiment: to study the effect of Cd, Pb, or Ni levels in soil on their uptake by O. syriacum. (2) Field samples: collected from major agricultural regions in Lebanon to analyze Cd, Pb, and Ni concentrations in soil and leaves. (3) Sale outlets samples: to measure the levels of Cd, Pb, and Ni in O. syriacum tissues in the market. Results showed that there was a positive correlation between levels of Cd, Pb, and Ni in soil and those in O. syriacum tissues. None of the field samples contained Pb or Ni that exceeded the maximum allowable limits (MAL). Three samples collected from heavily poultry-manured soil contained Cd higher than the MAL. Samples collected from sale outlets did not exceed the MAL for Ni but two exceeded the MAL for Cd and one for Pb. Trace metal contamination is not a major concern in O. syriacum produced in Lebanon. Only one mixture sample from a sale outlet was higher in Pb than the MAL and three samples from heavily manured fields exceeded the MAL for Cd.