SEGH Articles

"Chernobyl: now open to tourists" - Risk communication or public engagement

15 June 2011
The Ukraine government is not only to lift restrictions on access to the restricted zone around the site of the Chernobyl nuclear reactor, but also plan for redevelopment and repopulation.

A thought provoking headline from one of the UK's major daily newspapers (Walker, 2010), revealed an eye opening development at one of the most infamous environmental disaster zones. The Ukraine government is not only to lift restrictions on access to the restricted zone around the site of the Chernobyl nuclear reactor for citizens and tourists, but also launch plans for the progressive redevelopment and repopulation of the zone. It represents a significant decision, balancing socio economics with health risks. With obvious headline grabbing impact, it also raises an issue many environmental regulators face when dealing with "contamination" - the reality of the disruption and impacts, both short and long term on the communities affected and the barriers to identifying acceptable solutions.

As the UK enters into the 11th year of its "Part IIa", risk-based regulatory regime for contaminated land, the consequences of contaminated land management on the affected human population is more frequently one of engagement and communication. Options for development and choices for are numerous, information available to support these decisions increasingly draws on the academic community, who are often criticised for the lack of understanding and the direct relevance of their research to support policy and regulation decision making.

So what are the issues? Where are the problems?

A number of recent publications show we are starting to face these challenges (e.g. Burger et al 2010; SNIFFER, 2010) and that for SEGH and wider academic community new opportunities to focus the efforts of our research. We offer some reflections on the Chernobyl situation - a perspective from an experienced practicing environmental regulator and a middle aged academic who cut his research teeth in the Chernobyl cloud....

Five million people live in the areas of Russia, Ukraine and Belarus considered to be ‘Contaminated' by radionuclides following the catastrophic failure of the Chernobyl nuclear power plant in 1986.  Approximately 349,400 people were subsequently evacuated from contaminated areas (Yablokov & Nesterenko, 2009), where 137Cs exceeded 555 kBq m-2 (UNSCEAR, 2006).  A 30km radius zone of alienation was set up around the plant in Ukraine with similar exclusion zones established in Belarus to restrict access to these more contaminated areas (UNSCEAR, 2006).  Twenty-five years later, these exclusion zones remain largely vacated, but for the remediation workers, the residents who refused to relocate and the occasional tourist bus party.

In 2006, the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) published a revaluation of its radiation effects assessment of 2000, which finds the majority of affected people to have been exposed to low-level radiation doses and who "need not live in fear of serious health consequences".  However, the rapid relocation is shown to have had psychological effects resulting from the break up of established community groups, anxiety for future health implications, which may also lead to psychosomatic symptoms.  This has incurred a significant financial welfare burden on the respective Government administrations.

The UNSCEAR (2006) report considers the majority of ‘contaminated' exclusion zones to be safe for rehabilitation of residents, although some areas are indicated to require on-going restrictions on land-use activities.  In addition to the socio-economic burden and unprecedented scale of investment into the remediation of the affected areas, there is now increasing political pressure to repopulate and reinstate economic value to these exclusion zones.

Irregular or "spotty" contamination distribution, bioaccumulation of radionuclides, the changing conditions of radioactivity and the presence of additional soil contaminants such as lead (Yablokov & Nesterenko, 2009) will present difficulties when it comes to zoning areas for controlling land use activities.  Whilst UNSCEAR (2000, 2006) report levels as an average that may be a few times in exceedance of the background levels, ‘hot spots' tens to hundreds of meters across may be ten times the background level of the surrounding area (Yablokov & Nesterenko, 2009).

The Chernobyl radioactive contamination is both dynamic and long term (Yablokov & Nesterenko, 2009) and requires a management strategy incorporating a controlled land use policy and communication strategy could provide an authoritative framework for local governmental agencies.  Different types of environmental assessments may be required according to contaminant, media and sensitivity of land use and conflicting guidance from regulatory agencies and governmental administrations have the potential to be contradictory or confusing (Burger et al, 2010).

Effective communication must be based on the understanding that people will have different perceptions of risk as a result of their own situation and values (SNIFFER, 2010).  The presence of Chernobyl radionuclides may exceed established thresholds that deem the land contaminated.  However, the observed health effects appear to be less severe than originally anticipated in the UNSCEAR (2000) assessment report. In addition to concerns for health and wellbeing of the individual and family, people will be concerned about property values, amenity, liability, damage to the wider environment and level of confidence in the ability of authorities to provide protection (SNIFFER, 2010).  Produce from the area is likely to be blighted by association and alternatives such as biofuel crops may provide a more gainful economic return.

Residents who have been involuntary exposed to contamination suffer form the loss of control in their lives (SNIFFER, 2010).  Although, there is a substantial volume of information available to residents, this needs to be processed and disseminated in a format as to provide people with a sufficient understanding to have a constructive involvement in developing solutions for the re-building of towns and infrastructure (SNIFFER, 2010).  This approach empowers the community alleviating "victims' syndrome" and reinstating an element of control.

Children who were evacuated in 1986 may have young families of their own and much of the displaced population are likely to be settled in their new communities.  Many of the vacant and now derelict homes will require financial assistance for restoration or rebuild.  Rehabilitation of the exclusion zone will require further investment to create incentives for people to move there, promoting safe healthy lifestyles, social amenities and economic prospects.  Transparent and truthful risk communication will be critical in persuading families that it is safe enough to return home. 

In the absence of human activity, wildlife has thrived and nature reserve designation is being considered.  The infamy of the Chernobyl disaster may be its economic lifeline with ‘environmental' tourism maintaining a high profile for the site and securing commitment from the EU to continue its long-term monitoring of the after effects. 

Roslyn McIntosh & Andrew Hursthouse, University West of Scotland, Paisley UK. Andrew.Hurthouse@uws.ac.uk

References

Burger J., Powers C. and Gochfeld M. (2010) Regulatory requirements and tools for environmental assessment of hazardous wastes: Understanding tribal and stakeholder concerns using Department of Energy sites.  Journal of Environmental Management (2010) 1-10.

Nesterenko VB and Yablokov AV (2009) Chapter I. Chernobyl Contamination: An Overview.  Annals of the New York Academy of Sciences.

SNIFFER (2010) Communicating Understanding of Contaminated Land Risks.  Project UKLQ13.  May 2010.

UNSCEAR (2000) Report to the General Assembly. Annex J. Exposures and Effects of the Chernobyl Accident (UN, New York): 130pp

UNSCEAR (2006) Chernobyl's Legacy: Health, Environmental and Socio-Economic Impacts and Recommendations to the Governments of Belarus, the Russian Federation and Ukraine.  The Chernobyl Forum: 2003-2005.  Second Revised Version.

Walker, P. (2010) Chernobyl: now open to tourists http://www.guardian.co.uk/world/2010/dec/13/chernobyl-now-open-to-tourists

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Ecological impact of the antibiotic ciprofloxacin on microbial community of aerobic activated sludge 2019-08-16

    Abstract

    This study investigated the effects and fate of the antibiotic ciprofloxacin (CIP) at environmentally relevant levels (50–500 µg/L) in activated sludge (AS) microbial communities under aerobic conditions. Exposure to 500 µg/L of CIP decreased species diversity by about 20% and significantly altered the phylogenetic structure of AS communities compared to those of control communities (no CIP exposure), while there were no significant changes upon exposure to 50 µg/L of CIP. Analysis of community composition revealed that exposure to 500 µg/L of CIP significantly reduced the relative abundance of Rhodobacteraceae and Nakamurellaceae by more than tenfold. These species frequently occur in AS communities across many full-scale wastewater treatment plants and are involved in key ecosystem functions (i.e., organic matter and nitrogen removal). Our analyses showed that 50–500 µg/L CIP was poorly removed in AS (about 20% removal), implying that the majority of CIP from AS processes may be released with either their effluents or waste sludge. We therefore strongly recommend further research on CIP residuals and/or post-treatment processes (e.g., anaerobic digestion) for waste streams that may cause ecological risks in receiving water bodies.

  • Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: a high density sampling survey in the Parauapebas basin, Brazilian Amazon 2019-08-10

    Abstract

    A high-density regional-scale soil geochemical survey comprising 727 samples (one sample per each 5 × 5 km grid) was carried out in the Parauapebas sub-basin of the Brazilian Amazonia, under the Itacaiúnas Basin Geochemical Mapping and Background Project. Samples were taken from two depths at each site: surface soil, 0–20 cm and deep soil, 30–50 cm. The ground and sieved (< 75 µm) fraction was digested using aqua regia and analyzed for 51 elements by inductively coupled plasma mass spectrometry (ICPMS). All data were used here, but the principal focus was on the potential toxic elements (PTEs) and Fe and Mn to evaluate the spatial distribution patterns and to establish their geochemical background concentrations in soils. Geochemical maps as well as principal component analysis (PCA) show that the distribution patterns of the elements are very similar between surface and deep soils. The PCA, applied on clr-transformed data, identified four major associations: Fe–Ti–V–Sc–Cu–Cr–Ni (Gp-1); Zr–Hf–U–Nb–Th–Al–P–Mo–Ga (Gp-2); K–Na–Ca–Mg–Ba–Rb–Sr (Gp-3); and La–Ce–Co–Mn–Y–Zn–Cd (Gp-4). Moreover, the distribution patterns of elements varied significantly among the three major geological domains. The whole data indicate a strong imprint of local geological setting in the geochemical associations and point to a dominant geogenic origin for the analyzed elements. Copper and Fe in Gp-1 were enriched in the Carajás basin and are associated with metavolcanic rocks and banded-iron formations, respectively. However, the spatial distribution of Cu is also highly influenced by two hydrothermal mineralized copper belts. Ni–Cr in Gp-1 are highly correlated and spatially associated with mafic and ultramafic units. The Gp-2 is partially composed of high field strength elements (Zr, Hf, Nb, U, Th) that could be linked to occurrences of A-type Neoarchean granites. The Gp-3 elements are mobile elements which are commonly found in feldspars and other rock-forming minerals being liberated by chemical weathering. The background threshold values (BTV) were estimated separately for surface and deep soils using different methods. The ‘75th percentile’, which commonly used for the estimation of the quality reference values (QRVs) following the Brazilian regulation, gave more restrictive or conservative (low) BTVs, while the ‘MMAD’ was more realistic to define high BTVs that can better represent the so-called mineralized/normal background. Compared with CONAMA Resolution (No. 420/2009), the conservative BTVs of most of the toxic elements were below the prevention limits (PV), except Cu, but when the high BTVs are considered, Cu, Co, Cr and Ni exceeded the PV limits. The degree of contamination (Cdeg), based on the conservative BTVs, indicates low contamination, except in the Carajás basin, which shows many anomalies and had high contamination mainly from Cu, Cr and Ni, but this is similar between surface and deep soils indicating that the observed high anomalies are strictly related to geogenic control. This is supported when the Cdeg is calculated using the high BTVs, which indicates low contamination. This suggests that the use of only conservative BTVs for the entire region might overestimate the significance of anthropogenic contamination; thus, we suggest the use of high BTVs for effective assessment of soil contamination in this region. The methodology and results of this study may help developing strategies for geochemical mapping in other Carajás soils or in other Amazonian soils with similar characteristics.

  • Uptake of Cd, Pb, and Ni by Origanum syriacum produced in Lebanon 2019-08-06

    Abstract

    Trace metals are found naturally in soil. However, the increase in industrial and agricultural polluting activities has increased trace metal contamination and raised high concerns in the public health sector. The study was conducted on Origanum syriacum, one of the most consumed herbs in the Middle East, and was divided into three parts. (1) Pot experiment: to study the effect of Cd, Pb, or Ni levels in soil on their uptake by O. syriacum. (2) Field samples: collected from major agricultural regions in Lebanon to analyze Cd, Pb, and Ni concentrations in soil and leaves. (3) Sale outlets samples: to measure the levels of Cd, Pb, and Ni in O. syriacum tissues in the market. Results showed that there was a positive correlation between levels of Cd, Pb, and Ni in soil and those in O. syriacum tissues. None of the field samples contained Pb or Ni that exceeded the maximum allowable limits (MAL). Three samples collected from heavily poultry-manured soil contained Cd higher than the MAL. Samples collected from sale outlets did not exceed the MAL for Ni but two exceeded the MAL for Cd and one for Pb. Trace metal contamination is not a major concern in O. syriacum produced in Lebanon. Only one mixture sample from a sale outlet was higher in Pb than the MAL and three samples from heavily manured fields exceeded the MAL for Cd.