SEGH Articles

"Chernobyl: now open to tourists" - Risk communication or public engagement

15 June 2011
The Ukraine government is not only to lift restrictions on access to the restricted zone around the site of the Chernobyl nuclear reactor, but also plan for redevelopment and repopulation.

A thought provoking headline from one of the UK's major daily newspapers (Walker, 2010), revealed an eye opening development at one of the most infamous environmental disaster zones. The Ukraine government is not only to lift restrictions on access to the restricted zone around the site of the Chernobyl nuclear reactor for citizens and tourists, but also launch plans for the progressive redevelopment and repopulation of the zone. It represents a significant decision, balancing socio economics with health risks. With obvious headline grabbing impact, it also raises an issue many environmental regulators face when dealing with "contamination" - the reality of the disruption and impacts, both short and long term on the communities affected and the barriers to identifying acceptable solutions.

As the UK enters into the 11th year of its "Part IIa", risk-based regulatory regime for contaminated land, the consequences of contaminated land management on the affected human population is more frequently one of engagement and communication. Options for development and choices for are numerous, information available to support these decisions increasingly draws on the academic community, who are often criticised for the lack of understanding and the direct relevance of their research to support policy and regulation decision making.

So what are the issues? Where are the problems?

A number of recent publications show we are starting to face these challenges (e.g. Burger et al 2010; SNIFFER, 2010) and that for SEGH and wider academic community new opportunities to focus the efforts of our research. We offer some reflections on the Chernobyl situation - a perspective from an experienced practicing environmental regulator and a middle aged academic who cut his research teeth in the Chernobyl cloud....

Five million people live in the areas of Russia, Ukraine and Belarus considered to be ‘Contaminated' by radionuclides following the catastrophic failure of the Chernobyl nuclear power plant in 1986.  Approximately 349,400 people were subsequently evacuated from contaminated areas (Yablokov & Nesterenko, 2009), where 137Cs exceeded 555 kBq m-2 (UNSCEAR, 2006).  A 30km radius zone of alienation was set up around the plant in Ukraine with similar exclusion zones established in Belarus to restrict access to these more contaminated areas (UNSCEAR, 2006).  Twenty-five years later, these exclusion zones remain largely vacated, but for the remediation workers, the residents who refused to relocate and the occasional tourist bus party.

In 2006, the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) published a revaluation of its radiation effects assessment of 2000, which finds the majority of affected people to have been exposed to low-level radiation doses and who "need not live in fear of serious health consequences".  However, the rapid relocation is shown to have had psychological effects resulting from the break up of established community groups, anxiety for future health implications, which may also lead to psychosomatic symptoms.  This has incurred a significant financial welfare burden on the respective Government administrations.

The UNSCEAR (2006) report considers the majority of ‘contaminated' exclusion zones to be safe for rehabilitation of residents, although some areas are indicated to require on-going restrictions on land-use activities.  In addition to the socio-economic burden and unprecedented scale of investment into the remediation of the affected areas, there is now increasing political pressure to repopulate and reinstate economic value to these exclusion zones.

Irregular or "spotty" contamination distribution, bioaccumulation of radionuclides, the changing conditions of radioactivity and the presence of additional soil contaminants such as lead (Yablokov & Nesterenko, 2009) will present difficulties when it comes to zoning areas for controlling land use activities.  Whilst UNSCEAR (2000, 2006) report levels as an average that may be a few times in exceedance of the background levels, ‘hot spots' tens to hundreds of meters across may be ten times the background level of the surrounding area (Yablokov & Nesterenko, 2009).

The Chernobyl radioactive contamination is both dynamic and long term (Yablokov & Nesterenko, 2009) and requires a management strategy incorporating a controlled land use policy and communication strategy could provide an authoritative framework for local governmental agencies.  Different types of environmental assessments may be required according to contaminant, media and sensitivity of land use and conflicting guidance from regulatory agencies and governmental administrations have the potential to be contradictory or confusing (Burger et al, 2010).

Effective communication must be based on the understanding that people will have different perceptions of risk as a result of their own situation and values (SNIFFER, 2010).  The presence of Chernobyl radionuclides may exceed established thresholds that deem the land contaminated.  However, the observed health effects appear to be less severe than originally anticipated in the UNSCEAR (2000) assessment report. In addition to concerns for health and wellbeing of the individual and family, people will be concerned about property values, amenity, liability, damage to the wider environment and level of confidence in the ability of authorities to provide protection (SNIFFER, 2010).  Produce from the area is likely to be blighted by association and alternatives such as biofuel crops may provide a more gainful economic return.

Residents who have been involuntary exposed to contamination suffer form the loss of control in their lives (SNIFFER, 2010).  Although, there is a substantial volume of information available to residents, this needs to be processed and disseminated in a format as to provide people with a sufficient understanding to have a constructive involvement in developing solutions for the re-building of towns and infrastructure (SNIFFER, 2010).  This approach empowers the community alleviating "victims' syndrome" and reinstating an element of control.

Children who were evacuated in 1986 may have young families of their own and much of the displaced population are likely to be settled in their new communities.  Many of the vacant and now derelict homes will require financial assistance for restoration or rebuild.  Rehabilitation of the exclusion zone will require further investment to create incentives for people to move there, promoting safe healthy lifestyles, social amenities and economic prospects.  Transparent and truthful risk communication will be critical in persuading families that it is safe enough to return home. 

In the absence of human activity, wildlife has thrived and nature reserve designation is being considered.  The infamy of the Chernobyl disaster may be its economic lifeline with ‘environmental' tourism maintaining a high profile for the site and securing commitment from the EU to continue its long-term monitoring of the after effects. 

Roslyn McIntosh & Andrew Hursthouse, University West of Scotland, Paisley UK. Andrew.Hurthouse@uws.ac.uk

References

Burger J., Powers C. and Gochfeld M. (2010) Regulatory requirements and tools for environmental assessment of hazardous wastes: Understanding tribal and stakeholder concerns using Department of Energy sites.  Journal of Environmental Management (2010) 1-10.

Nesterenko VB and Yablokov AV (2009) Chapter I. Chernobyl Contamination: An Overview.  Annals of the New York Academy of Sciences.

SNIFFER (2010) Communicating Understanding of Contaminated Land Risks.  Project UKLQ13.  May 2010.

UNSCEAR (2000) Report to the General Assembly. Annex J. Exposures and Effects of the Chernobyl Accident (UN, New York): 130pp

UNSCEAR (2006) Chernobyl's Legacy: Health, Environmental and Socio-Economic Impacts and Recommendations to the Governments of Belarus, the Russian Federation and Ukraine.  The Chernobyl Forum: 2003-2005.  Second Revised Version.

Walker, P. (2010) Chernobyl: now open to tourists http://www.guardian.co.uk/world/2010/dec/13/chernobyl-now-open-to-tourists

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Biochar-based constructed wetlands to treat reverse osmosis rejected concentrates in chronic kidney disease endemic areas in Sri Lanka 2017-12-01

    Abstract

    The objectives were to investigate the potential remedial measures for reverse osmosis (RO) rejected water through constructed wetlands (CWs) with low-cost materials in the media established in chronic kidney disease of unknown etiology (CKDu) prevalent area in Sri Lanka. A pilot-scale surface and subsurface water CWs were established at the Medawachchiya community-based RO water supply unit. Locally available soil, calicut tile and biochar were used in proportions of 81, 16.5 and 2.5% (w/w), respectively, as filter materials in the subsurface. Vetiver grass and Scirpus grossus were selected for subsurface wetland while water lettuce and water hyacinth were chosen for free water surface CWs. Results showed that the CKDu sensitive parameters; total dissolved solids, hardness, total alkalinity and fluoride were reduced considerably (20–85%) and most met desirable levels of stipulated ambient standards. Biochar seemed to play a major role in removing fluoride from the system which may be due to the existing and adsorbed K+, Ca+2, Mg+2, etc. on the biochar surface via chemisorption. The least reduction was observed for alkalinity. This study indicated potential purification of aforesaid ions in water which are considerably present in RO rejection. Therefore, the invented bio-geo constructed wetland can be considered as a sustainable, economical and effective option for reducing high concentrations of CKDu sensitive parameters in RO rejected water before discharging into the inland waters.

  • Medical geology of endemic goiter in Kalutara, Sri Lanka; distribution and possible causes 2017-12-01

    Abstract

    This study assesses the distribution of goiter in the Kalutara District, Sri Lanka in order to find causative factors for the occurrence of goiter even after the salt iodization. A questionnaire survey was conducted at the household level and at the same time iodine and selenium levels of the water sources were analyzed. Questionnaire survey results indicated the highest numbers of goiter patients in the northern part where the lowest were found in the southern sector which may be due to the presence of acid sulfate soils. Females were more susceptible and it even showed a transmittance between generations. Average iodine concentrations in subsurface water of goiter endemic regions are 28.25 ± 15.47 μg/L whereas non-goiter regions show identical values at 24.74 ± 18.29 μg/L. Surface water exhibited relatively high values at 30.87 ± 16.13 μg/L. Endemic goiter was reported in some isolated patches where iodine and selenium concentrations low, latter was <10 μg/L. The formation of acid sulfate soils in the marshy lands in Kalutara district may lead to transformation of biological available iodine oxidation into volatile iodine by humic substances, at the same time organic matter rich peaty soil may have strong held of iodine and selenium which again induced by low pH and high temperature were suggested as the instrumental factors in the endemic goiter in Kalutara district. Hence, geochemical features such as soil pH, organic matter and thick lateritic cap in the Kalutara goiter endemic area play a role in controlling the available selenium and iodine for food chain through plant uptake and in water.

  • Nickel accumulation in paddy rice on serpentine soils containing high geogenic nickel contents in Taiwan 2017-12-01

    Abstract

    We investigated the extractability of nickel (Ni) in serpentine soils collected from rice paddy fields in eastern Taiwan to evaluate the bioavailability of Ni in the soils as well as for demonstrating the health risks of Ni in rice. Total Ni concentrations in the soils ranged were 70.2–2730 mg/kg (mean, 472 mg/kg), greatly exceeding the natural background content and soil control standard in Taiwan. Available Ni concentration only accounts for <10% of total soil Ni content; 0.1 N HCl-extractable Ni was the more suitable index for Ni bioavailability in the soil to rice than was diethylenetriaminepentaacetic acid (DTPA)-extractable Ni. The accumulation ability of rice roots was much higher than that of its shoots; however, compared with those reported previously, our brown and polished rice samples contained much higher Ni concentrations, within the ranges of 1.50–4.53 and 2.45–5.54 mg/kg, respectively. On the basis of the provisional tolerable Ni intake for adults recommended by the World Health Organization (WHO), daily consumption of this rice can result in an excessive Ni intake.