SEGH Articles

Depositional and ecological environments of the Bay of Bengal coast of northeast India

01 May 2012
Dr. Asok Kumar Bhattacharya summarises his work at the University of Calcutta on the Sundarban wetlands in India, including work on coastal sedimentology, impact of anthropogenic pollution and coastal zone management.

 

Dr. Asok Kumar Bhattacharya is a professor in the department of Marine Science,Calcutta University, India. Over the past 43 years he has been actively researching in the fields of fluviatile and coastal sedimentology, bioturbation processes and products, geomorphic and ecological changes of coastal zone by natural and anthropogenic forcing, impact of heavy metal contamination and persistent organic pollutants (POPs) in the biotic and abiotic components of Indian Sundarban wetland, and coastal zone management. The study areas belong to the siliciclastic, tropical, meso-macrotidal, low-lying coastal plains of northeast India having moderate wave climate excepting periods of tropical cyclonic surges with a wave height of about 7m.  

While working on beach processes and sedimentation, Dr. Bhattacharya discovered a ‘new record of current crescents lacking preservation of obstacles’ formed by some semi permanent globose marine algae Valonia sp. stranded on beach surface. He is also the first to name and describe the ‘backwash-and-swash- oriented current crescents’ from the beach surface useful as good indicators of beach slope (1:50 to 1:90), current direction and depositional environment.

Dr. Bhattacharya studied a large variety of surficial- and internal bioturbation structures produced primarily by polychaetes, bivalves and crabs, and indicated their importance in differentiating shore-parallel biozonation of intertidal flats.  He is the first to identify the sandy megarippled substrate preference for the carnivorous polychaete Diopatra cuprea which was well known for its preference for muddy substratum. His research has also determined  that some soft-bottom polychaetes can thrive better in most polluted substrates of Sundarban wetland and hence, well suited for undertaking biomonitoring programme towards its sustainable management.

Drs.Bhattacharya and Sarkar (see previous article Feb 2012 for Sundarban) published their research about the threat of ecological imbalance of this fragile coastal zone due to rapid depletion  of living resources like tiger prawn seeds (Panaeus monodon),and bulk of mollusks due to indiscriminate overexploitation for aquaculture farms and other areas of commercial benefits.

His research further highlighted the adverse impacts of constructions of embankments on the ecological balance of mangrove ecosystem of Sundarban wetland. It is revealed that such constructions abruptly truncate the mangrove forests occurring behind the intertidal flats to be replaced later by marsh vegetation.

Figure 1: Mining and transportation of sand from Digha beach for construction purposes

Dr. Bhattacharya’s research has addressed several issues relating to coastal inundation
and hazards faced by the poor coastal communities. Mining and transportation of beach sands (Fig.1), destruction of dune vegetation by trampling and grazing, leveling of dune tops  for constructions and open sea vistas (Fig.2) have been identified to be the major anthropogenic stresses responsible for degradation of this coast The effects of tourism and fishing by trawlers  often enhance the process of coastal degradation. Natural forcing from high waves generated by periodic cyclones often breaches the dune trains for several meters and pushes the shoreline further inland (Fig.3).

 

Figure 2: Levelling of dune tops for construction of fisherfolks’s makeshifts and avenue to open sea approach. Inundation of inland areas takes place through such avenues during high water stage causing lot of coastal pollution.

Figure 3:  Landward invasion of beach at Dadanpatrabar. The well exposed roots of coconut tree and other plant reveal a good amount of beach lowering.

 

His collaborative research with scientists of India and abroad on persistent organic pollutants (POPs) in sediment and biota of Sundarban wetland evaluated for the first time the ecotoxicological risks of this fragile ecosystem. The coastal environments of Sudarban are badly affected by multiple sources of contaminants, of which municipal sewage; effluents from agriculture, aquaculture, upland industries, deforestation, dredging and shipping traffics are the most important. POPs are hazardous because of their semivolatile nature, toxicity, persistence, long–range transport and bioaccumulation potential. Contaminations from the residues of five classes of POPs such as DDTS, HCHs , PAHs , PCBs and PBDEs in sediments and in selective biota were found to be of variable range in both vertical and lateral extensions of this wetland. The pollutant effects were assessed by use of different sediment quality guidelines. Sediment dispersal patterns, wave–tide climate, biotubational churning of sediments, atmospheric precipitation and distances from sources to sinks of pollutants were identified as the primary causes of such variability. In addition to researches on POPs, the distribution and possible source of several trace elements in sediment cores and their ecotoxicological effects have also been determined tracing their routes from sources to sinks.

 

Professor Asok Kumar Bhattacharya, Department of Marine Science, University of Calcutta. bhattacharyaasok747@gmail.com 

 

References

Overexploitation of shellfishes in northeast coast of India-A.Bhattacharya and S.K.Sarkar. AMBIO, published by Springer on behalf of Royal Swedish Academy of Sciences,  32,(1), 70-75,2003

Breaching of coastal dunes : An issue  of management  of the  coast  to safeguard  the coastal communities  of West Bengal ,India- A. Bhattacharya, A. Bhattacharya  and S.K.Sarkar. Asian Journal of Environment and Disaster Management, Singapore, 1(2),23-35,2009. DOI:10.3850/S1793924009000182

Quantification and source identification of polycyclic aromatic hydrocarbons in core sediments from Sundarban mangrove wetland, India –C.Dominguez, S.K.Sarkar,A.Bhattacharya,M.Chatterjee,B.D.Bhattacharya,E.Jover,j.Albaiges,J.MBayona,Md.A.Alam and K. K. Satpathy. Archives of Environmental Contamination andToxicology, Springer, 59(1):49-61, 2010 http//www.springerlink.com/content/132803q28210256t/

Fluvial  geomorphology of the Kupa River  drainage basin, Croatia: A perspective of its application in river management and pollution studies- Stanislav Franciscovic-Bilinski,Asok kumar Bhattacharya, Halka Bilinski, Bhaskar Dev Bhattacharya, Avijit Mitra and Sansosh Kumar Sarkar. Zeitschrift fur Geomorphologie, E.Schweizerbart’sche Verlagbuchhandlung Publishers, 55(2), DOI:10.1127/0372-8854/2011/0056

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Assessment of the toxicity of silicon nanooxide in relation to various components of the agroecosystem under the conditions of the model experiment 2018-08-18

    Abstract

    Investigation of SiO2 nanoparticles (NPs) effect on Eisenia fetida showed no toxic effect of the metal at a concentration of 250, 500 and 1000 mg per kg of soil, but conversely, a biomass increase from 23.5 to 29.5% (at the protein level decrease from 60 to 80%). The reaction of the earthworm organism fermentative system was expressed in the decrease in the level of superoxide dismutase (SOD) on the 14th day and in the increase in its activity to 27% on the 28th day. The catalase level (CAT) showed low activity at average element concentrations and increase by 39.4% at a dose of 1000 mg/kg. Depression of malonic dialdehyde (MDA) was established at average concentrations of 11.2% and level increase up to 9.1% at a dose of 1000 mg/kg with the prolongation of the effect up to 87.5% after 28-day exposure. The change in the microbiocenosis of the earthworm intestine was manifested by a decrease in the number of ammonifiers (by 42.01–78.9%), as well as in the number of amylolytic microorganisms (by 31.7–65.8%). When the dose of SiO2 NPs increased from 100 to 1000 mg/kg, the number of Azotobacter increased (by 8.2–22.2%), while the number of cellulose-destroying microorganisms decreased to 71.4% at a maximum dose of 1000 mg/kg. The effect of SiO2 NPs on Triticum aestivum L. was noted in the form of a slight suppression of seed germination (no more than 25%), an increase in the length of roots and aerial organs which generally resulted in an increase in plant biomass. Assessing the soil microorganisms’ complex during introduction of metal into the germination medium of Triticum aestivum L., there was noted a decrease in the ammonifiers number (by 4.7–67.6%) with a maximum value at a dose of 1000 mg/kg. The number of microorganisms using mineral nitrogen decreased by 29.5–69.5% with a simultaneous increase in the number at a dose of 50 mg/kg (+ 20%). Depending on NP dose, there was an inhibition of the microscopic fungi development by 18.1–72.7% and an increase in the number of cellulose-destroying microorganisms. For all variants of the experiment, the activity of soil enzymes of the hydrolase and oxidoreductase classes was decreased.

  • Seasonal characteristics of chemical compositions and sources identification of PM 2.5 in Zhuhai, China 2018-08-16

    Abstract

    Fine particulate matter is associated with adverse health effects, but exactly which characteristics of PM2.5 are responsible for this is still widely debated. We evaluated seasonal dynamics of the composition and chemical characteristics of PM2.5 in Zhuhai, China. PM2.5 characteristics at five selected sites within Zhuhai city were analyzed. Sampling began on January 10, 2015, and was conducted for 1 year. The ambient mass concentration, carbon content (organic and elemental carbon, OC and EC), level of inorganic ions, and major chemical composition of PM2.5 were also determined. Average concentrations of PM2.5 were lower than the National Ambient Air Quality Standard (NAAQS) 24-h average of 65 μg/m3. The daily PM2.5 concentration in Zhuhai city exhibited clear seasonal dynamics, with higher daily PM2.5 concentrations in autumn and winter than in spring and summer. Carbon species (OC and EC) and water-soluble ions were the primary components of the PM2.5 fraction of particles. Apart from OC and EC, chemical species in PM2.5 were mainly composed of NH4+ and SO42−. There was a marked difference between the summer and winter periods: the concentrations of OC and EC in winter were roughly 3.4 and 4.0 times than those in summer, while NH4+, SO42−, NO3, and Na+ were 3.2, 4.5, 28.0, and 5.7 times higher in winter than those in summer, respectively. The results of chemical analysis were consistent with three sources dominating PM2.5: coal combustion, biomass burning, and vehicle exhaust; road dust and construction; and from reaction of HCl and HNO3 with NH3 to form NH4Cl and NH4NO3. However, additional work is needed to improve the mass balance and to obtain the source profiles necessary to use these data for source apportionment.

  • Estimates of potential childhood lead exposure from contaminated soil using the USEPA IEUBK model in Melbourne, Australia 2018-08-14

    Abstract

    Soils in inner city areas internationally and in Australia have been contaminated with lead (Pb) primarily from past emissions of Pb in petrol, deteriorating exterior Pb-based paints and from industry. Children can be exposed to Pb in soil dust through ingestion and inhalation leading to elevated blood lead levels (BLLs). Currently, the contribution of soil Pb to the spatial distribution of children’s BLLs is unknown in the Melbourne metropolitan area. In this study, children’s potential BLLs were estimated from surface soil (0–2 cm) samples collected at 250 locations across the Melbourne metropolitan area using the United States Environmental Protection Agency (USEPA) Integrated Exposure Uptake Biokinetic (IEUBK) model. A dataset of 250 surface soil Pb concentrations indicate that soil Pb concentrations are highly variable but are generally elevated in the central and western portions of the Melbourne metropolitan area. The mean, median and geometric soil Pb concentrations were 193, 110 and 108 mg/kg, respectively. Approximately 20 and 4% of the soil samples exceeded the Australian HIL-A residential and HIL-C recreational soil Pb guidelines of 300 and 600 mg/kg, respectively. The IEUBK model predicted a geometric mean BLL of 2.5 ± 2.1 µg/dL (range: 1.3–22.5 µg/dL) in a hypothetical 24-month-old child with BLLs exceeding 5 and 10 µg/dL at 11.6 and 0.8% of the sampling locations, respectively. This study suggests children’s exposure to Pb contaminated surface soil could potentially be associated with low-level BLLs in some locations in the Melbourne metropolitan area.