SEGH Articles

Depositional and ecological environments of the Bay of Bengal coast of northeast India

01 May 2012
Dr. Asok Kumar Bhattacharya summarises his work at the University of Calcutta on the Sundarban wetlands in India, including work on coastal sedimentology, impact of anthropogenic pollution and coastal zone management.

 

Dr. Asok Kumar Bhattacharya is a professor in the department of Marine Science,Calcutta University, India. Over the past 43 years he has been actively researching in the fields of fluviatile and coastal sedimentology, bioturbation processes and products, geomorphic and ecological changes of coastal zone by natural and anthropogenic forcing, impact of heavy metal contamination and persistent organic pollutants (POPs) in the biotic and abiotic components of Indian Sundarban wetland, and coastal zone management. The study areas belong to the siliciclastic, tropical, meso-macrotidal, low-lying coastal plains of northeast India having moderate wave climate excepting periods of tropical cyclonic surges with a wave height of about 7m.  

While working on beach processes and sedimentation, Dr. Bhattacharya discovered a ‘new record of current crescents lacking preservation of obstacles’ formed by some semi permanent globose marine algae Valonia sp. stranded on beach surface. He is also the first to name and describe the ‘backwash-and-swash- oriented current crescents’ from the beach surface useful as good indicators of beach slope (1:50 to 1:90), current direction and depositional environment.

Dr. Bhattacharya studied a large variety of surficial- and internal bioturbation structures produced primarily by polychaetes, bivalves and crabs, and indicated their importance in differentiating shore-parallel biozonation of intertidal flats.  He is the first to identify the sandy megarippled substrate preference for the carnivorous polychaete Diopatra cuprea which was well known for its preference for muddy substratum. His research has also determined  that some soft-bottom polychaetes can thrive better in most polluted substrates of Sundarban wetland and hence, well suited for undertaking biomonitoring programme towards its sustainable management.

Drs.Bhattacharya and Sarkar (see previous article Feb 2012 for Sundarban) published their research about the threat of ecological imbalance of this fragile coastal zone due to rapid depletion  of living resources like tiger prawn seeds (Panaeus monodon),and bulk of mollusks due to indiscriminate overexploitation for aquaculture farms and other areas of commercial benefits.

His research further highlighted the adverse impacts of constructions of embankments on the ecological balance of mangrove ecosystem of Sundarban wetland. It is revealed that such constructions abruptly truncate the mangrove forests occurring behind the intertidal flats to be replaced later by marsh vegetation.

Figure 1: Mining and transportation of sand from Digha beach for construction purposes

Dr. Bhattacharya’s research has addressed several issues relating to coastal inundation
and hazards faced by the poor coastal communities. Mining and transportation of beach sands (Fig.1), destruction of dune vegetation by trampling and grazing, leveling of dune tops  for constructions and open sea vistas (Fig.2) have been identified to be the major anthropogenic stresses responsible for degradation of this coast The effects of tourism and fishing by trawlers  often enhance the process of coastal degradation. Natural forcing from high waves generated by periodic cyclones often breaches the dune trains for several meters and pushes the shoreline further inland (Fig.3).

 

Figure 2: Levelling of dune tops for construction of fisherfolks’s makeshifts and avenue to open sea approach. Inundation of inland areas takes place through such avenues during high water stage causing lot of coastal pollution.

Figure 3:  Landward invasion of beach at Dadanpatrabar. The well exposed roots of coconut tree and other plant reveal a good amount of beach lowering.

 

His collaborative research with scientists of India and abroad on persistent organic pollutants (POPs) in sediment and biota of Sundarban wetland evaluated for the first time the ecotoxicological risks of this fragile ecosystem. The coastal environments of Sudarban are badly affected by multiple sources of contaminants, of which municipal sewage; effluents from agriculture, aquaculture, upland industries, deforestation, dredging and shipping traffics are the most important. POPs are hazardous because of their semivolatile nature, toxicity, persistence, long–range transport and bioaccumulation potential. Contaminations from the residues of five classes of POPs such as DDTS, HCHs , PAHs , PCBs and PBDEs in sediments and in selective biota were found to be of variable range in both vertical and lateral extensions of this wetland. The pollutant effects were assessed by use of different sediment quality guidelines. Sediment dispersal patterns, wave–tide climate, biotubational churning of sediments, atmospheric precipitation and distances from sources to sinks of pollutants were identified as the primary causes of such variability. In addition to researches on POPs, the distribution and possible source of several trace elements in sediment cores and their ecotoxicological effects have also been determined tracing their routes from sources to sinks.

 

Professor Asok Kumar Bhattacharya, Department of Marine Science, University of Calcutta. bhattacharyaasok747@gmail.com 

 

References

Overexploitation of shellfishes in northeast coast of India-A.Bhattacharya and S.K.Sarkar. AMBIO, published by Springer on behalf of Royal Swedish Academy of Sciences,  32,(1), 70-75,2003

Breaching of coastal dunes : An issue  of management  of the  coast  to safeguard  the coastal communities  of West Bengal ,India- A. Bhattacharya, A. Bhattacharya  and S.K.Sarkar. Asian Journal of Environment and Disaster Management, Singapore, 1(2),23-35,2009. DOI:10.3850/S1793924009000182

Quantification and source identification of polycyclic aromatic hydrocarbons in core sediments from Sundarban mangrove wetland, India –C.Dominguez, S.K.Sarkar,A.Bhattacharya,M.Chatterjee,B.D.Bhattacharya,E.Jover,j.Albaiges,J.MBayona,Md.A.Alam and K. K. Satpathy. Archives of Environmental Contamination andToxicology, Springer, 59(1):49-61, 2010 http//www.springerlink.com/content/132803q28210256t/

Fluvial  geomorphology of the Kupa River  drainage basin, Croatia: A perspective of its application in river management and pollution studies- Stanislav Franciscovic-Bilinski,Asok kumar Bhattacharya, Halka Bilinski, Bhaskar Dev Bhattacharya, Avijit Mitra and Sansosh Kumar Sarkar. Zeitschrift fur Geomorphologie, E.Schweizerbart’sche Verlagbuchhandlung Publishers, 55(2), DOI:10.1127/0372-8854/2011/0056

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Characteristics of PM 2.5 , CO 2 and particle-number concentration in mass transit railway carriages in Hong Kong 2017-08-01

    Abstract

    Fine particulate matter (PM2.5) levels, carbon dioxide (CO2) levels and particle-number concentrations (PNC) were monitored in train carriages on seven routes of the mass transit railway in Hong Kong between March and May 2014, using real-time monitoring instruments. The 8-h average PM2.5 levels in carriages on the seven routes ranged from 24.1 to 49.8 µg/m3, higher than levels in Finland and similar to those in New York, and in most cases exceeding the standard set by the World Health Organisation (25 µg/m3). The CO2 concentration ranged from 714 to 1801 ppm on four of the routes, generally exceeding indoor air quality guidelines (1000 ppm over 8 h) and reaching levels as high as those in Beijing. PNC ranged from 1506 to 11,570 particles/cm3, lower than readings in Sydney and higher than readings in Taipei. Correlation analysis indicated that the number of passengers in a given carriage did not affect the PM2.5 concentration or PNC in the carriage. However, a significant positive correlation (p < 0.001, R 2 = 0.834) was observed between passenger numbers and CO2 levels, with each passenger contributing approximately 7.7–9.8 ppm of CO2. The real-time measurements of PM2.5 and PNC varied considerably, rising when carriage doors opened on arrival at a station and when passengers inside the carriage were more active. This suggests that air pollutants outside the train and passenger movements may contribute to PM2.5 levels and PNC. Assessment of the risk associated with PM2.5 exposure revealed that children are most severely affected by PM2.5 pollution, followed in order by juveniles, adults and the elderly. In addition, females were found to be more vulnerable to PM2.5 pollution than males (p < 0.001), and different subway lines were associated with different levels of risk.

  • Comparison of chemical compositions in air particulate matter during summer and winter in Beijing, China 2017-08-01

    Abstract

    The development of industry in Beijing, the capital of China, particularly in last decades, has caused severe environmental pollution including particulate matter (PM), dust–haze, and photochemical smog, which has already caused considerable harm to local ecological environment. Thus, in this study, air particle samples were continuously collected in August and December, 2014. And elements (Si, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Cd, Ba, Pb and Ti) and ions ( \({\text{NO}}_{3}^{-}\) , \({\text{SO}}_{4}^{2-}\) , F, Cl, Na+, K+, Mg2+, Ca2+ and \({\text{NH}}_{4}^{+}\) ) were analyzed by inductively coupled plasma mass spectrometer and ion chromatography. According to seasonal changes, discuss the various pollution situations in order to find possible particulate matter sources and then propose appropriate control strategies to local government. The results indicated serious PM and metallic pollution in some sampling days, especially in December. Chemical Mass Balance model revealed central heating activities, road dust and vehicles contribute as main sources, account for 5.84–32.05 % differently to the summer and winter air pollution in 2014.

  • Annual ambient atmospheric mercury speciation measurement from Longjing, a rural site in Taiwan 2017-08-01

    Abstract

    The main purpose of this study was to monitor ambient air particulates and mercury species [RGM, Hg(p), GEM and total mercury] concentrations and dry depositions over rural area at Longjing in central Taiwan during October 2014 to September 2015. In addition, passive air sampler and knife-edge surrogate surface samplers were used to collect the ambient air mercury species concentrations and dry depositions, respectively, in this study. Moreover, direct mercury analyzer was directly used to detect the mercury Hg(p) and RGM concentrations. The result indicated that: (1) The average highest RGM, Hg(p), GEM and total mercury concentrations, and dry depositions were observed in January, prevailing dust storm occurred in winter season was the possible major reason responsible for the above findings. (2) The highest average RGM, Hg(p), GEM and total mercury concentrations, dry depositions and velocities were occurred in winter. This is because that China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. (3) The results indicated that the total mercury ratios of Kaohsiung to that of this study were 5.61. This is because that Kaohsiung has the largest industry density (~60 %) in Taiwan. (4) the USA showed average lower mercury species concentrations when compared to those of the other world countries. The average ratios of China/USA values were 89, 76 and 160 for total mercury, RGM and Hg(p), respectively, during the years of 2000–2012.