SEGH Articles

Depositional and ecological environments of the Bay of Bengal coast of northeast India

01 May 2012
Dr. Asok Kumar Bhattacharya summarises his work at the University of Calcutta on the Sundarban wetlands in India, including work on coastal sedimentology, impact of anthropogenic pollution and coastal zone management.

 

Dr. Asok Kumar Bhattacharya is a professor in the department of Marine Science,Calcutta University, India. Over the past 43 years he has been actively researching in the fields of fluviatile and coastal sedimentology, bioturbation processes and products, geomorphic and ecological changes of coastal zone by natural and anthropogenic forcing, impact of heavy metal contamination and persistent organic pollutants (POPs) in the biotic and abiotic components of Indian Sundarban wetland, and coastal zone management. The study areas belong to the siliciclastic, tropical, meso-macrotidal, low-lying coastal plains of northeast India having moderate wave climate excepting periods of tropical cyclonic surges with a wave height of about 7m.  

While working on beach processes and sedimentation, Dr. Bhattacharya discovered a ‘new record of current crescents lacking preservation of obstacles’ formed by some semi permanent globose marine algae Valonia sp. stranded on beach surface. He is also the first to name and describe the ‘backwash-and-swash- oriented current crescents’ from the beach surface useful as good indicators of beach slope (1:50 to 1:90), current direction and depositional environment.

Dr. Bhattacharya studied a large variety of surficial- and internal bioturbation structures produced primarily by polychaetes, bivalves and crabs, and indicated their importance in differentiating shore-parallel biozonation of intertidal flats.  He is the first to identify the sandy megarippled substrate preference for the carnivorous polychaete Diopatra cuprea which was well known for its preference for muddy substratum. His research has also determined  that some soft-bottom polychaetes can thrive better in most polluted substrates of Sundarban wetland and hence, well suited for undertaking biomonitoring programme towards its sustainable management.

Drs.Bhattacharya and Sarkar (see previous article Feb 2012 for Sundarban) published their research about the threat of ecological imbalance of this fragile coastal zone due to rapid depletion  of living resources like tiger prawn seeds (Panaeus monodon),and bulk of mollusks due to indiscriminate overexploitation for aquaculture farms and other areas of commercial benefits.

His research further highlighted the adverse impacts of constructions of embankments on the ecological balance of mangrove ecosystem of Sundarban wetland. It is revealed that such constructions abruptly truncate the mangrove forests occurring behind the intertidal flats to be replaced later by marsh vegetation.

Figure 1: Mining and transportation of sand from Digha beach for construction purposes

Dr. Bhattacharya’s research has addressed several issues relating to coastal inundation
and hazards faced by the poor coastal communities. Mining and transportation of beach sands (Fig.1), destruction of dune vegetation by trampling and grazing, leveling of dune tops  for constructions and open sea vistas (Fig.2) have been identified to be the major anthropogenic stresses responsible for degradation of this coast The effects of tourism and fishing by trawlers  often enhance the process of coastal degradation. Natural forcing from high waves generated by periodic cyclones often breaches the dune trains for several meters and pushes the shoreline further inland (Fig.3).

 

Figure 2: Levelling of dune tops for construction of fisherfolks’s makeshifts and avenue to open sea approach. Inundation of inland areas takes place through such avenues during high water stage causing lot of coastal pollution.

Figure 3:  Landward invasion of beach at Dadanpatrabar. The well exposed roots of coconut tree and other plant reveal a good amount of beach lowering.

 

His collaborative research with scientists of India and abroad on persistent organic pollutants (POPs) in sediment and biota of Sundarban wetland evaluated for the first time the ecotoxicological risks of this fragile ecosystem. The coastal environments of Sudarban are badly affected by multiple sources of contaminants, of which municipal sewage; effluents from agriculture, aquaculture, upland industries, deforestation, dredging and shipping traffics are the most important. POPs are hazardous because of their semivolatile nature, toxicity, persistence, long–range transport and bioaccumulation potential. Contaminations from the residues of five classes of POPs such as DDTS, HCHs , PAHs , PCBs and PBDEs in sediments and in selective biota were found to be of variable range in both vertical and lateral extensions of this wetland. The pollutant effects were assessed by use of different sediment quality guidelines. Sediment dispersal patterns, wave–tide climate, biotubational churning of sediments, atmospheric precipitation and distances from sources to sinks of pollutants were identified as the primary causes of such variability. In addition to researches on POPs, the distribution and possible source of several trace elements in sediment cores and their ecotoxicological effects have also been determined tracing their routes from sources to sinks.

 

Professor Asok Kumar Bhattacharya, Department of Marine Science, University of Calcutta. bhattacharyaasok747@gmail.com 

 

References

Overexploitation of shellfishes in northeast coast of India-A.Bhattacharya and S.K.Sarkar. AMBIO, published by Springer on behalf of Royal Swedish Academy of Sciences,  32,(1), 70-75,2003

Breaching of coastal dunes : An issue  of management  of the  coast  to safeguard  the coastal communities  of West Bengal ,India- A. Bhattacharya, A. Bhattacharya  and S.K.Sarkar. Asian Journal of Environment and Disaster Management, Singapore, 1(2),23-35,2009. DOI:10.3850/S1793924009000182

Quantification and source identification of polycyclic aromatic hydrocarbons in core sediments from Sundarban mangrove wetland, India –C.Dominguez, S.K.Sarkar,A.Bhattacharya,M.Chatterjee,B.D.Bhattacharya,E.Jover,j.Albaiges,J.MBayona,Md.A.Alam and K. K. Satpathy. Archives of Environmental Contamination andToxicology, Springer, 59(1):49-61, 2010 http//www.springerlink.com/content/132803q28210256t/

Fluvial  geomorphology of the Kupa River  drainage basin, Croatia: A perspective of its application in river management and pollution studies- Stanislav Franciscovic-Bilinski,Asok kumar Bhattacharya, Halka Bilinski, Bhaskar Dev Bhattacharya, Avijit Mitra and Sansosh Kumar Sarkar. Zeitschrift fur Geomorphologie, E.Schweizerbart’sche Verlagbuchhandlung Publishers, 55(2), DOI:10.1127/0372-8854/2011/0056

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Genotoxic effects of PM 10 and PM 2.5 bound metals: metal bioaccessibility, free radical generation, and role of iron 2018-10-09

    Abstract

    The present study was undertaken to examine the possible genotoxicity of ambient particulate matter (PM10 and PM2.5) in Pune city. In both size fractions of PM, Fe was found to be the dominant metal by concentration, contributing 22% and 30% to the total mass of metals in PM10 and PM2.5, respectively. The speciation of soluble Fe in PM10 and PM2.5 was investigated. The average fraction of Fe3+ and Fe2+ concentrations in PM2.5 was 80.6% and 19.3%, respectively, while in PM2.5 this fraction was 71.1% and 29.9%, respectively. The dominance of Fe(III) state in both PM fractions facilitates the generation of hydroxyl radicals (·OH), which can damage deoxyribose nucleic acid (DNA), as was evident from the gel electrophoresis study. The DNA damage by ·OH was supported through the in silico density functional theory (DFT) method. DFT results showed that C8 site of guanine (G)/adenine (A) and C6 site of thymine (T)/cytosine (C) would be energetically more favorable for the attack of hydroxyl radicals, when compared with the C4 and C5 sites. The non-standard Watson–Crick base pairing models of oxidative products of G, A, T and C yield lower-energy conformations than canonical dA:dT and dG:dC base pairing. This study may pave the way to understand the structural consequences of base-mediated oxidative lesions in DNA and its role in human diseases.

  • A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment 2018-10-08

    Abstract

    Airborne particulate matter (PM) that is a heterogeneous mixture of particles with a variety of chemical components and physical features acts as a potential risk to human health. The ability to pose health risk depends upon the size, concentration and chemical composition of the suspended particles. Potential toxic elements (PTEs) associated with PM have multiple sources of origin, and each source has the ability to generate multiple particulate PTEs. In urban areas, automobile, industrial emissions, construction and demolition activities are the major anthropogenic sources of pollution. Fine particles associated with PTEs have the ability to penetrate deep into respiratory system resulting in an increasing range of adverse health effects, at ever-lower concentrations. In-depth investigation of PTEs content and mode of occurrence in PM is important from both environmental and pathological point of view. Considering this air pollution risk, several studies had addressed the issues related to these pollutants in road and street dust, indicating high pollution level than the air quality guidelines. Observed from the literature, particulate PTEs pollution can lead to respiratory symptoms, cardiovascular problems, lungs cancer, reduced lungs function, asthma and severe case mortality. Due to the important role of PM and associated PTEs, detailed knowledge of their impacts on human health is of key importance.

  • Interactions between polycyclic aromatic hydrocarbons and epoxide hydrolase 1 play roles in asthma 2018-10-06

    Abstract

    Asthma, as one of the most common chronic diseases in children and adults, is a consequence of complex gene–environment interactions. Polycyclic aromatic hydrocarbons (PAHs), as a group of widespread environmental organic pollutants, are involved in the development, triggering and pathologic changes of asthma. Various previous studies reported the critical roles of PAHs in immune changes, oxidative stress and environment–gene interactions of asthma. EPHX1 (the gene of epoxide hydrolase 1, an enzyme mediating human PAH metabolism) had a possible association with asthma by influencing PAH metabolism. This review summarized that (1) the roles of PAHs in asthma—work as risk factors; (2) the possible mechanisms involved in PAH-related asthma—through immunologic and oxidative stress changes; (3) the interactions between PAHs and EPHX1 involved in asthma—enzymatic activity of epoxide hydrolase 1, which affected by EPHX1 genotypes/SNPs/diplotypes, could influence human PAH metabolism and people’s vulnerability to PAH exposure. This review provided a better understanding of the above interactions and underlying mechanisms for asthma which help to raise public’s concern on PAH control and develop strategies for individual asthma primary prevention.