SEGH Articles

Depositional and ecological environments of the Bay of Bengal coast of northeast India

01 May 2012
Dr. Asok Kumar Bhattacharya summarises his work at the University of Calcutta on the Sundarban wetlands in India, including work on coastal sedimentology, impact of anthropogenic pollution and coastal zone management.

 

Dr. Asok Kumar Bhattacharya is a professor in the department of Marine Science,Calcutta University, India. Over the past 43 years he has been actively researching in the fields of fluviatile and coastal sedimentology, bioturbation processes and products, geomorphic and ecological changes of coastal zone by natural and anthropogenic forcing, impact of heavy metal contamination and persistent organic pollutants (POPs) in the biotic and abiotic components of Indian Sundarban wetland, and coastal zone management. The study areas belong to the siliciclastic, tropical, meso-macrotidal, low-lying coastal plains of northeast India having moderate wave climate excepting periods of tropical cyclonic surges with a wave height of about 7m.  

While working on beach processes and sedimentation, Dr. Bhattacharya discovered a ‘new record of current crescents lacking preservation of obstacles’ formed by some semi permanent globose marine algae Valonia sp. stranded on beach surface. He is also the first to name and describe the ‘backwash-and-swash- oriented current crescents’ from the beach surface useful as good indicators of beach slope (1:50 to 1:90), current direction and depositional environment.

Dr. Bhattacharya studied a large variety of surficial- and internal bioturbation structures produced primarily by polychaetes, bivalves and crabs, and indicated their importance in differentiating shore-parallel biozonation of intertidal flats.  He is the first to identify the sandy megarippled substrate preference for the carnivorous polychaete Diopatra cuprea which was well known for its preference for muddy substratum. His research has also determined  that some soft-bottom polychaetes can thrive better in most polluted substrates of Sundarban wetland and hence, well suited for undertaking biomonitoring programme towards its sustainable management.

Drs.Bhattacharya and Sarkar (see previous article Feb 2012 for Sundarban) published their research about the threat of ecological imbalance of this fragile coastal zone due to rapid depletion  of living resources like tiger prawn seeds (Panaeus monodon),and bulk of mollusks due to indiscriminate overexploitation for aquaculture farms and other areas of commercial benefits.

His research further highlighted the adverse impacts of constructions of embankments on the ecological balance of mangrove ecosystem of Sundarban wetland. It is revealed that such constructions abruptly truncate the mangrove forests occurring behind the intertidal flats to be replaced later by marsh vegetation.

Figure 1: Mining and transportation of sand from Digha beach for construction purposes

Dr. Bhattacharya’s research has addressed several issues relating to coastal inundation
and hazards faced by the poor coastal communities. Mining and transportation of beach sands (Fig.1), destruction of dune vegetation by trampling and grazing, leveling of dune tops  for constructions and open sea vistas (Fig.2) have been identified to be the major anthropogenic stresses responsible for degradation of this coast The effects of tourism and fishing by trawlers  often enhance the process of coastal degradation. Natural forcing from high waves generated by periodic cyclones often breaches the dune trains for several meters and pushes the shoreline further inland (Fig.3).

 

Figure 2: Levelling of dune tops for construction of fisherfolks’s makeshifts and avenue to open sea approach. Inundation of inland areas takes place through such avenues during high water stage causing lot of coastal pollution.

Figure 3:  Landward invasion of beach at Dadanpatrabar. The well exposed roots of coconut tree and other plant reveal a good amount of beach lowering.

 

His collaborative research with scientists of India and abroad on persistent organic pollutants (POPs) in sediment and biota of Sundarban wetland evaluated for the first time the ecotoxicological risks of this fragile ecosystem. The coastal environments of Sudarban are badly affected by multiple sources of contaminants, of which municipal sewage; effluents from agriculture, aquaculture, upland industries, deforestation, dredging and shipping traffics are the most important. POPs are hazardous because of their semivolatile nature, toxicity, persistence, long–range transport and bioaccumulation potential. Contaminations from the residues of five classes of POPs such as DDTS, HCHs , PAHs , PCBs and PBDEs in sediments and in selective biota were found to be of variable range in both vertical and lateral extensions of this wetland. The pollutant effects were assessed by use of different sediment quality guidelines. Sediment dispersal patterns, wave–tide climate, biotubational churning of sediments, atmospheric precipitation and distances from sources to sinks of pollutants were identified as the primary causes of such variability. In addition to researches on POPs, the distribution and possible source of several trace elements in sediment cores and their ecotoxicological effects have also been determined tracing their routes from sources to sinks.

 

Professor Asok Kumar Bhattacharya, Department of Marine Science, University of Calcutta. bhattacharyaasok747@gmail.com 

 

References

Overexploitation of shellfishes in northeast coast of India-A.Bhattacharya and S.K.Sarkar. AMBIO, published by Springer on behalf of Royal Swedish Academy of Sciences,  32,(1), 70-75,2003

Breaching of coastal dunes : An issue  of management  of the  coast  to safeguard  the coastal communities  of West Bengal ,India- A. Bhattacharya, A. Bhattacharya  and S.K.Sarkar. Asian Journal of Environment and Disaster Management, Singapore, 1(2),23-35,2009. DOI:10.3850/S1793924009000182

Quantification and source identification of polycyclic aromatic hydrocarbons in core sediments from Sundarban mangrove wetland, India –C.Dominguez, S.K.Sarkar,A.Bhattacharya,M.Chatterjee,B.D.Bhattacharya,E.Jover,j.Albaiges,J.MBayona,Md.A.Alam and K. K. Satpathy. Archives of Environmental Contamination andToxicology, Springer, 59(1):49-61, 2010 http//www.springerlink.com/content/132803q28210256t/

Fluvial  geomorphology of the Kupa River  drainage basin, Croatia: A perspective of its application in river management and pollution studies- Stanislav Franciscovic-Bilinski,Asok kumar Bhattacharya, Halka Bilinski, Bhaskar Dev Bhattacharya, Avijit Mitra and Sansosh Kumar Sarkar. Zeitschrift fur Geomorphologie, E.Schweizerbart’sche Verlagbuchhandlung Publishers, 55(2), DOI:10.1127/0372-8854/2011/0056

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil 2017-04-19

    Abstract

    A 30-day incubation experiment was conducted using a heavy metal-contaminated mined soil amended with date palm feedstock (FS) and its derivative biochars (BCs) at three pyrolysis temperatures of 300 (BC-300), 500 (BC-500), and 700 °C (BC-700) with different application rates (0.0, 5, 15, and 30 g kg−1) to investigate their short-term effects on soil respiration (CO2–C efflux), microbial biomass carbon (MBC), soil organic carbon (SOC), mobile fraction of heavy metals (Cd, Cu, Pb, Zn, Mn, and Fe), pH, and electrical conductivity (EC). The results showed that FS and BC-300 with increasing addition rate significantly reduced soil pH, whereas SOC, CO2–C efflux, and soil MBC were increased compared to the control. On the contrary, BC-500 and BC-700 increased soil pH at early stage of incubation and have small or no effects on SOC, CO2–C efflux, and MBC. Based on the results, the date palm biochars exhibited much lower cumulative CO2–C efflux than feedstock, even with low-temperature biochar, indicating that BCs have C sequestration potential. Applying BC-700 at 15 and 30 g kg−1 significantly reduced cumulative CO2–C efflux by 21.8 and 45.4% compared to the control, respectively. The incorporation of FS into contaminated soil significantly increased the mobile content of Cd and Mn, but decreased the mobile content of Cu. However, BC-300 significantly reduced the mobile content of Cd, Cu, Pb, and Zn. It could be concluded that low-temperature biochar could be used as a soil amendment for reducing heavy metal mobility in mining contaminated soil in addition to minimize soil CO2–C efflux.

  • Historical record of anthropogenic polycyclic aromatic hydrocarbons in a lake sediment from the southern Tibetan Plateau 2017-04-17

    Abstract

    High-altitude lake sediments can be used as natural archives to reconstruct the history of pollutants. In this work, the temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was determined in a sediment core collected from the southern Tibetan Plateau (TP), which was dated by using the 210Pb dating method and validated with the 137Cs fallout peak. The concentrations of the anthropogenic PAHs (Σ8PAH) in the sediment core ranged from 0.83 to 12 ng/g dw, and the fluxes of the Σ8PAH were in the range of 2.1–27 g/cm2/year. The temporal variations in the concentration and input flux of anthropogenic PAHs were low with little variability before the 1950s, and then gradually increased from the 1950s to the 1980s, and an accelerated increase was observed after the early 1980s. The content of total organic carbon played an insignificant role in affecting the time trends of PAHs in the sediment core. Diagnostic concentration fractions of PAH components indicate PAHs in the lake sediment of the southern TP which are mainly from biomass burning and/or from long-range atmospheric transport.

  • Determination of the potential implementation impact of 2016 ministry of environmental protection generic assessment criteria for potentially contaminated sites in China 2017-04-12

    Abstract

    The Ministry of Environmental Protection of China issued a 3rd draft edition of risk-based Generic Assessment Criteria (the MEP-GAC) in March 2016. Since these will be the first authoritative GAC in China, their implementation is likely to have a significant impact on China’s growing contaminated land management sector. This study aims to determine the potential implementation impact of the MEP-GAC through an in-depth analysis of the management context, land use scenarios, health criteria values adopted and exposure pathways considered. The MEP-GAC have been proposed for two broad categories of land use scenarios for contaminated land risk assessment, and these two categories of land use scenarios need to be further delved, and a MEP-GAC for Chinese cultivated land scenario ought to be developed, to ensure human health protection of Chinese farmers. The MEP-GAC have adopted 10−6 as the acceptable lifetime cancer risk, given the widespread extent and severe level of land contamination in China, consideration should be given to the decision on excess lifetime cancer risk of 10−5. During risk assessment process in practice, it is better to review the 20% TDI against local circumstances to determine their suitability before adopting it. The MEP-GAC are based on a SOM value of 1%, for regions with particularly high SOM, it might be necessary to develop regional GAC, due to SOM’s significant impact on the GAC developed. An authoritative risk assessment model developed based on HJ25.3-2014 would help facilitate the DQRA process in practice. The MEP-GAC could better reflect the likely exposures of China’s citizens due to vapour inhalation by using characteristics of Chinese exposure scenarios, including China-generic building stock, as inputs into the Johnson and Ettinger model as opposed to adoption of the US EPA parameters. The MEP-GAC once implemented will set the trajectory for the development of the investigation, assessment and remediation of land contamination for years.