SEGH Articles

Diffusive gradients in thin films (DGT): An emerging technique for bioavailability assessment of chemicals in the environment

08 April 2014
As a rapidly developing passive sampling method for the labile forms of chemicals in waters, sediments and soils, the diffusive gradients in thin films (DGT) technique has significant advantages over conventional methods: in situ measurement, time averaged concentrations and high spatial resolution.

The diffusive gradients in thin films (DGT) technology provides a novel approach for the in situ measurement of the labile forms of chemical elements, such as phosphorus (P), sulphur (S), arsenic (As) and metals in waters, sediments and soils. It was invented in Lancaster in 1993. The simple device uses a hydrogel binding layer impregnated with Chelex resin or other binding agents to accumulate ions. The binding layer is overlain by a diffusive layer of hydrogel and a filter. Ions have to diffuse through the filter and diffusive layer to reach the binding layer. It is the establishment of a constant concentration gradient in the diffusive layer that forms the basis for measuring chemical element concentrations in solutions quantitatively. The effect of temperature can be predicted from the known temperature dependence of the diffusion coefficient.

 Compared with conventional methods, DGT has significant advantages:

  • In situ measurement
  • Time averaged concentrations
  • High spatial resolution

The in situ measurement avoids the artificial influences including contamination of sample collection and treatment which may change the forms of chemicals.  The time averaged concentration reflects representative measurement over a period of time. The high-resolution information captures biogeochemical heterogeneity of interested elements distributed in microenvironments, such as in rhizosphere and the vicinity of the sediment-water interface. Moreover, DGT is a dynamic technique by simultaneously considering the diffusive of solutes and their kinetic resupply from the solid phases. All the advantages of DGT significantly promote the collection of “true” information of the bioavailable or labile forms of chemicals in the environment, with potential applications in agriculture, environmental monitoring and mining industry.

 

The fundamental theory behind DGT is Fick’s first law of diffusion. For deployment, the unit is emerged in water or inserted into sediments or in close contact with wet soils. The labile forms of chemical elements diffuse through the filter and diffusive gel, adsorbed on the binding gel, and then quantified.

The analytes that can be measured by DGT are determined by the binding agent in use. The binding agent for the first DGT was Chelex resin for the measurements of metal ions. After that, the ferrihydrite gel was used to measure phosphorus, and silver iodide was included in the gel to take up sulphide. Recently the Zr-oxide gel was developed to measure phosphorus and inorganic arsenic with high capacities. The agents are also combined to enable simultaneous measurements of multiple analytes. For example, the hydrous zirconium oxide (Zr-oxide) has been combined with silver iodide to measure both phosphorus and sulphide, and combined with Chelex to measure phosphorus and iron.

Another significant development in DGT is the 2D high resolution measurement, which provides new evidences for the micro-scale geochemical heterogeneity. The scales have generally reached sub-millimetre level using various technologies, including proton induced X-ray emissions (PIXE), computer-imaging densitometry (CID), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and 2D slicing.

The field applications are still at the early testing stage. Further studies are needed to properly interpret the DGT measured results under complex environmental conditions, and standard procedures and guideline values based on DGT are required to pave the way for its routine applications in environmental monitoring.

Contact: Dr. Chaosheng Zhang, School of Geography and Archaeology, National University of Ireland, Galway, Ireland; Prof. Shiming Ding, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.

 

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Improving arsenopyrite oxidation rate laws: implications for arsenic mobilization during aquifer storage and recovery (ASR) 2018-04-25

    Abstract

    Aquifer storage and recovery (ASR) and aquifer recharge (AR) provide technical solutions to address water supply deficits and growing future water demands. Unfortunately, the mobilization of naturally present arsenic due to ASR/AR operations has undermined its application on a larger scale. Predicting arsenic mobility in the subsurface during ASR/AR is further complicated by site-specific factors, including the arsenic mobilization mechanisms, groundwater flow conditions, and multi-phase geochemical interactions. In order to ensure safe and sustainable ASR/AR operation, a better understanding of these factors is needed. The current study thus aims to better characterize and model arsenic remobilization at ASR/AR sites by compiling and analyzing available kinetic data on arsenic mobilization from arsenopyrite under different aqueous conditions. More robust and widely applicable rate laws are developed for geochemical conditions relevant to ASR/AR. Sensitivity analysis of these new rate laws gives further insight into the controlling geochemical factors for arsenic mobilization. When improved rate laws are incorporated as the inputs for reactive transport modeling, arsenic mobilization in ASR/AR operations can be predicted with an improved accuracy. The outcomes will be used to guide groundwater monitoring and specify ASR/AR operational parameters, including water pretreatment requirements prior to injection.

  • Heavy metal exposure has adverse effects on the growth and development of preschool children 2018-04-25

    Abstract

    The purpose of this study was to investigate the associations between levels of lead (Pb), cadmium (Cd), chromium (Cr), and manganese (Mn) in the PM2.5 and blood and physical growth, and development parameters including birth length and weight, height, weight, body mass index (BMI), head circumference, and chest circumference in preschool children from Guiyu (e-waste exposure area) and Haojiang (the reference area). A total of 470 preschool children from Guiyu and Haojiang located in southeast coast of China were recruited and required to undergo physical examination and blood tests during the study period. Birth length and weight were obtained by birth records and questionnaire. Pb and Cd in both PM2.5 and blood were significantly higher in Guiyu than Haojiang. Remarkably, the children of Guiyu had significantly lower birth weight and length, BMI, and chest circumference when compare to their peers from the reference area (all p value < 0.05). Spearman correlation analyses showed that blood Pb was negatively correlated with height (r = −0.130, p < 0.001), weight (r = −0.169, p < 0.001), BMI (r = −0.100, p < 0.05), head circumference (r = −0.095, p < 0.05), and chest circumference (r = −0.112, p < 0.05). After adjustment for the potential confounders in further linear regression analyses, blood Pb was negatively associated with height (β = −0.066, p < 0.05), weight (β = −0.119, p < 0.001), head circumference (β = −0.123, p < 0.01), and chest circumference (β = −0.104, p < 0.05), respectively. No significant association between blood Cd, Cr, or Mn was found with any of our developmental outcomes. Taken together, lead exposure limits or delays the growth and development of preschool children.

  • Contamination characteristics of trace metals in dust from different levels of roads of a heavily air-polluted city in north China 2018-04-24

    Abstract

    Concentrations of eight trace metals (TMs) in road dust (RD) (particles < 25 μm) from urban areas of Xinxiang, China, were determined by inductively coupled plasma mass spectrometry. The geometric mean concentrations of Zn, Mn, Pb, As, Cu, Cr, Ni and Cd were 489, 350, 114, 101, 60.0, 39.7, 31.6, and 5.1 mg kg−1, respectively. When compared with TM levels in background soil, the samples generally display elevated TM concentrations, except for Cr and Mn, and for Cd the enrichment value was 69.6. Spatial variations indicated TMs in RD from park path would have similar sources with main roads, collector streets and bypasses. Average daily exposure doses of the studied TMs were about three orders of magnitude higher for hand-to-mouth ingestion than dermal contact, and the exposure doses for children were 9.33 times higher than that for adults. The decreasing trend of calculated hazard indexes (HI) for the eight elements was As > Pb > Cr > Mn > Cd > Zn > Ni > Cu for both children and adults.