SEGH Articles

Diffusive gradients in thin films (DGT): An emerging technique for bioavailability assessment of chemicals in the environment

08 April 2014
As a rapidly developing passive sampling method for the labile forms of chemicals in waters, sediments and soils, the diffusive gradients in thin films (DGT) technique has significant advantages over conventional methods: in situ measurement, time averaged concentrations and high spatial resolution.

The diffusive gradients in thin films (DGT) technology provides a novel approach for the in situ measurement of the labile forms of chemical elements, such as phosphorus (P), sulphur (S), arsenic (As) and metals in waters, sediments and soils. It was invented in Lancaster in 1993. The simple device uses a hydrogel binding layer impregnated with Chelex resin or other binding agents to accumulate ions. The binding layer is overlain by a diffusive layer of hydrogel and a filter. Ions have to diffuse through the filter and diffusive layer to reach the binding layer. It is the establishment of a constant concentration gradient in the diffusive layer that forms the basis for measuring chemical element concentrations in solutions quantitatively. The effect of temperature can be predicted from the known temperature dependence of the diffusion coefficient.

 Compared with conventional methods, DGT has significant advantages:

  • In situ measurement
  • Time averaged concentrations
  • High spatial resolution

The in situ measurement avoids the artificial influences including contamination of sample collection and treatment which may change the forms of chemicals.  The time averaged concentration reflects representative measurement over a period of time. The high-resolution information captures biogeochemical heterogeneity of interested elements distributed in microenvironments, such as in rhizosphere and the vicinity of the sediment-water interface. Moreover, DGT is a dynamic technique by simultaneously considering the diffusive of solutes and their kinetic resupply from the solid phases. All the advantages of DGT significantly promote the collection of “true” information of the bioavailable or labile forms of chemicals in the environment, with potential applications in agriculture, environmental monitoring and mining industry.

 

The fundamental theory behind DGT is Fick’s first law of diffusion. For deployment, the unit is emerged in water or inserted into sediments or in close contact with wet soils. The labile forms of chemical elements diffuse through the filter and diffusive gel, adsorbed on the binding gel, and then quantified.

The analytes that can be measured by DGT are determined by the binding agent in use. The binding agent for the first DGT was Chelex resin for the measurements of metal ions. After that, the ferrihydrite gel was used to measure phosphorus, and silver iodide was included in the gel to take up sulphide. Recently the Zr-oxide gel was developed to measure phosphorus and inorganic arsenic with high capacities. The agents are also combined to enable simultaneous measurements of multiple analytes. For example, the hydrous zirconium oxide (Zr-oxide) has been combined with silver iodide to measure both phosphorus and sulphide, and combined with Chelex to measure phosphorus and iron.

Another significant development in DGT is the 2D high resolution measurement, which provides new evidences for the micro-scale geochemical heterogeneity. The scales have generally reached sub-millimetre level using various technologies, including proton induced X-ray emissions (PIXE), computer-imaging densitometry (CID), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and 2D slicing.

The field applications are still at the early testing stage. Further studies are needed to properly interpret the DGT measured results under complex environmental conditions, and standard procedures and guideline values based on DGT are required to pave the way for its routine applications in environmental monitoring.

Contact: Dr. Chaosheng Zhang, School of Geography and Archaeology, National University of Ireland, Galway, Ireland; Prof. Shiming Ding, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.

 

 

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Characteristics of PM 2.5 , CO 2 and particle-number concentration in mass transit railway carriages in Hong Kong 2017-08-01

    Abstract

    Fine particulate matter (PM2.5) levels, carbon dioxide (CO2) levels and particle-number concentrations (PNC) were monitored in train carriages on seven routes of the mass transit railway in Hong Kong between March and May 2014, using real-time monitoring instruments. The 8-h average PM2.5 levels in carriages on the seven routes ranged from 24.1 to 49.8 µg/m3, higher than levels in Finland and similar to those in New York, and in most cases exceeding the standard set by the World Health Organisation (25 µg/m3). The CO2 concentration ranged from 714 to 1801 ppm on four of the routes, generally exceeding indoor air quality guidelines (1000 ppm over 8 h) and reaching levels as high as those in Beijing. PNC ranged from 1506 to 11,570 particles/cm3, lower than readings in Sydney and higher than readings in Taipei. Correlation analysis indicated that the number of passengers in a given carriage did not affect the PM2.5 concentration or PNC in the carriage. However, a significant positive correlation (p < 0.001, R 2 = 0.834) was observed between passenger numbers and CO2 levels, with each passenger contributing approximately 7.7–9.8 ppm of CO2. The real-time measurements of PM2.5 and PNC varied considerably, rising when carriage doors opened on arrival at a station and when passengers inside the carriage were more active. This suggests that air pollutants outside the train and passenger movements may contribute to PM2.5 levels and PNC. Assessment of the risk associated with PM2.5 exposure revealed that children are most severely affected by PM2.5 pollution, followed in order by juveniles, adults and the elderly. In addition, females were found to be more vulnerable to PM2.5 pollution than males (p < 0.001), and different subway lines were associated with different levels of risk.

  • Comparison of chemical compositions in air particulate matter during summer and winter in Beijing, China 2017-08-01

    Abstract

    The development of industry in Beijing, the capital of China, particularly in last decades, has caused severe environmental pollution including particulate matter (PM), dust–haze, and photochemical smog, which has already caused considerable harm to local ecological environment. Thus, in this study, air particle samples were continuously collected in August and December, 2014. And elements (Si, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Cd, Ba, Pb and Ti) and ions ( \({\text{NO}}_{3}^{-}\) , \({\text{SO}}_{4}^{2-}\) , F, Cl, Na+, K+, Mg2+, Ca2+ and \({\text{NH}}_{4}^{+}\) ) were analyzed by inductively coupled plasma mass spectrometer and ion chromatography. According to seasonal changes, discuss the various pollution situations in order to find possible particulate matter sources and then propose appropriate control strategies to local government. The results indicated serious PM and metallic pollution in some sampling days, especially in December. Chemical Mass Balance model revealed central heating activities, road dust and vehicles contribute as main sources, account for 5.84–32.05 % differently to the summer and winter air pollution in 2014.

  • Annual ambient atmospheric mercury speciation measurement from Longjing, a rural site in Taiwan 2017-08-01

    Abstract

    The main purpose of this study was to monitor ambient air particulates and mercury species [RGM, Hg(p), GEM and total mercury] concentrations and dry depositions over rural area at Longjing in central Taiwan during October 2014 to September 2015. In addition, passive air sampler and knife-edge surrogate surface samplers were used to collect the ambient air mercury species concentrations and dry depositions, respectively, in this study. Moreover, direct mercury analyzer was directly used to detect the mercury Hg(p) and RGM concentrations. The result indicated that: (1) The average highest RGM, Hg(p), GEM and total mercury concentrations, and dry depositions were observed in January, prevailing dust storm occurred in winter season was the possible major reason responsible for the above findings. (2) The highest average RGM, Hg(p), GEM and total mercury concentrations, dry depositions and velocities were occurred in winter. This is because that China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. (3) The results indicated that the total mercury ratios of Kaohsiung to that of this study were 5.61. This is because that Kaohsiung has the largest industry density (~60 %) in Taiwan. (4) the USA showed average lower mercury species concentrations when compared to those of the other world countries. The average ratios of China/USA values were 89, 76 and 160 for total mercury, RGM and Hg(p), respectively, during the years of 2000–2012.