SEGH Articles

Diffusive gradients in thin films (DGT): An emerging technique for bioavailability assessment of chemicals in the environment

08 April 2014
As a rapidly developing passive sampling method for the labile forms of chemicals in waters, sediments and soils, the diffusive gradients in thin films (DGT) technique has significant advantages over conventional methods: in situ measurement, time averaged concentrations and high spatial resolution.

The diffusive gradients in thin films (DGT) technology provides a novel approach for the in situ measurement of the labile forms of chemical elements, such as phosphorus (P), sulphur (S), arsenic (As) and metals in waters, sediments and soils. It was invented in Lancaster in 1993. The simple device uses a hydrogel binding layer impregnated with Chelex resin or other binding agents to accumulate ions. The binding layer is overlain by a diffusive layer of hydrogel and a filter. Ions have to diffuse through the filter and diffusive layer to reach the binding layer. It is the establishment of a constant concentration gradient in the diffusive layer that forms the basis for measuring chemical element concentrations in solutions quantitatively. The effect of temperature can be predicted from the known temperature dependence of the diffusion coefficient.

 Compared with conventional methods, DGT has significant advantages:

  • In situ measurement
  • Time averaged concentrations
  • High spatial resolution

The in situ measurement avoids the artificial influences including contamination of sample collection and treatment which may change the forms of chemicals.  The time averaged concentration reflects representative measurement over a period of time. The high-resolution information captures biogeochemical heterogeneity of interested elements distributed in microenvironments, such as in rhizosphere and the vicinity of the sediment-water interface. Moreover, DGT is a dynamic technique by simultaneously considering the diffusive of solutes and their kinetic resupply from the solid phases. All the advantages of DGT significantly promote the collection of “true” information of the bioavailable or labile forms of chemicals in the environment, with potential applications in agriculture, environmental monitoring and mining industry.

 

The fundamental theory behind DGT is Fick’s first law of diffusion. For deployment, the unit is emerged in water or inserted into sediments or in close contact with wet soils. The labile forms of chemical elements diffuse through the filter and diffusive gel, adsorbed on the binding gel, and then quantified.

The analytes that can be measured by DGT are determined by the binding agent in use. The binding agent for the first DGT was Chelex resin for the measurements of metal ions. After that, the ferrihydrite gel was used to measure phosphorus, and silver iodide was included in the gel to take up sulphide. Recently the Zr-oxide gel was developed to measure phosphorus and inorganic arsenic with high capacities. The agents are also combined to enable simultaneous measurements of multiple analytes. For example, the hydrous zirconium oxide (Zr-oxide) has been combined with silver iodide to measure both phosphorus and sulphide, and combined with Chelex to measure phosphorus and iron.

Another significant development in DGT is the 2D high resolution measurement, which provides new evidences for the micro-scale geochemical heterogeneity. The scales have generally reached sub-millimetre level using various technologies, including proton induced X-ray emissions (PIXE), computer-imaging densitometry (CID), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and 2D slicing.

The field applications are still at the early testing stage. Further studies are needed to properly interpret the DGT measured results under complex environmental conditions, and standard procedures and guideline values based on DGT are required to pave the way for its routine applications in environmental monitoring.

Contact: Dr. Chaosheng Zhang, School of Geography and Archaeology, National University of Ireland, Galway, Ireland; Prof. Shiming Ding, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.

 

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Membrane fouling control by Ca 2+ during coagulation–ultrafiltration process for algal-rich water treatment 2019-04-16

    Abstract

    Seasonal algal bloom, a water supply issue worldwide, can be efficiently solved by membrane technology. However, membranes typically suffer from serious fouling, which hinders the wide application of this technology. In this study, the feasibility of adding Ca2+ to control membrane fouling in coagulation–membrane treatment of algal-rich water was investigated. According to the results obtained, the normalized membrane flux decreased by a lower extent upon increasing the concentration of Ca2+ from 0 to 10 mmol/L. Simultaneously, the floc particle size increased significantly with the concentration of Ca2+, which leads to a lower hydraulic resistance. The coagulation performance is also enhanced with the concentration of Ca2+, inducing a slight osmotic pressure-induced resistance. The formation of Ca2+ coagulation flocs resulted in a looser, thin, and permeable cake layer on the membrane surface. This cake layer rejected organic pollutants and could be easily removed by physical and chemical cleaning treatments, as revealed by scanning electron microscopy images. The hydraulic irreversible membrane resistance was significantly reduced upon addition of Ca2+. All these findings suggest that the addition of Ca2+ may provide a simple-operation, cost-effective, and environmentally friendly technology for controlling membrane fouling during coagulation–membrane process for algal-rich water treatment.

  • Evaluation of the raw water quality: physicochemical and toxicological approaches 2019-04-13

    Abstract

    Environmental degradation has increased, mainly as a result of anthropogenic effects arising from population, industrial and agricultural growth. Water pollution is a problem that affects health, safety and welfare of the whole biota which shares the same environment. In Goiânia and metropolitan region, the main water body is the Meia Ponte River that is used for the abstraction of water, disposal of treated wastewater and effluents. In addition, this river receives wastewater from urban and rural areas. The aim in this present study was to evaluate the quality of raw water by some physical, chemical and toxicological tests. The physicochemical results found high levels of turbidity, conductivity, aluminum, phosphorus and metal iron, manganese, copper and lithium when compared to the standards of the Brazilian legislation. The values found of toxicity demonstrated a high degree of cytotoxicity and genotoxicity. Therefore, it was concluded that the Meia Ponte River has been undergoing constant environmental degradation, causing the poor quality of its waters. Thus, measures for the prevention and recovery should be adopted for the maintenance of the Meia Ponte River.

  • Review of the nature of some geophagic materials and their potential health effects on pregnant women: some examples from Africa 2019-04-11

    Abstract

    The voluntary human consumption of soil known as geophagy is a global practice and deep-rooted in many African cultures. The nature of geophagic material varies widely from the types to the composition. Generally, clay and termite mound soils are the main materials consumed by geophagists. Several studies revealed that gestating women across the world consume more soil than other groups for numerous motives. These motivations are related to medicinal, cultural and nutrients supplementation. Although geophagy in pregnancy (GiP) is a universal dynamic habit, the highest prevalence has been reported in African countries such as Kenya, Ghana, Rwanda, Nigeria, Tanzania, and South Africa. Geophagy can be both beneficial and detrimental. Its health effects depend on the amount and composition of the ingested soils, which is subjective to the geology and soil formation processes. In most cases, the negative health effects concomitant with the practice of geophagy eclipse the positive effects. Therefore, knowledge about the nature of geophagic material and the health effects that might arise from their consumption is important.