SEGH Articles

Diffusive gradients in thin films (DGT): An emerging technique for bioavailability assessment of chemicals in the environment

08 April 2014
As a rapidly developing passive sampling method for the labile forms of chemicals in waters, sediments and soils, the diffusive gradients in thin films (DGT) technique has significant advantages over conventional methods: in situ measurement, time averaged concentrations and high spatial resolution.

The diffusive gradients in thin films (DGT) technology provides a novel approach for the in situ measurement of the labile forms of chemical elements, such as phosphorus (P), sulphur (S), arsenic (As) and metals in waters, sediments and soils. It was invented in Lancaster in 1993. The simple device uses a hydrogel binding layer impregnated with Chelex resin or other binding agents to accumulate ions. The binding layer is overlain by a diffusive layer of hydrogel and a filter. Ions have to diffuse through the filter and diffusive layer to reach the binding layer. It is the establishment of a constant concentration gradient in the diffusive layer that forms the basis for measuring chemical element concentrations in solutions quantitatively. The effect of temperature can be predicted from the known temperature dependence of the diffusion coefficient.

 Compared with conventional methods, DGT has significant advantages:

  • In situ measurement
  • Time averaged concentrations
  • High spatial resolution

The in situ measurement avoids the artificial influences including contamination of sample collection and treatment which may change the forms of chemicals.  The time averaged concentration reflects representative measurement over a period of time. The high-resolution information captures biogeochemical heterogeneity of interested elements distributed in microenvironments, such as in rhizosphere and the vicinity of the sediment-water interface. Moreover, DGT is a dynamic technique by simultaneously considering the diffusive of solutes and their kinetic resupply from the solid phases. All the advantages of DGT significantly promote the collection of “true” information of the bioavailable or labile forms of chemicals in the environment, with potential applications in agriculture, environmental monitoring and mining industry.

 

The fundamental theory behind DGT is Fick’s first law of diffusion. For deployment, the unit is emerged in water or inserted into sediments or in close contact with wet soils. The labile forms of chemical elements diffuse through the filter and diffusive gel, adsorbed on the binding gel, and then quantified.

The analytes that can be measured by DGT are determined by the binding agent in use. The binding agent for the first DGT was Chelex resin for the measurements of metal ions. After that, the ferrihydrite gel was used to measure phosphorus, and silver iodide was included in the gel to take up sulphide. Recently the Zr-oxide gel was developed to measure phosphorus and inorganic arsenic with high capacities. The agents are also combined to enable simultaneous measurements of multiple analytes. For example, the hydrous zirconium oxide (Zr-oxide) has been combined with silver iodide to measure both phosphorus and sulphide, and combined with Chelex to measure phosphorus and iron.

Another significant development in DGT is the 2D high resolution measurement, which provides new evidences for the micro-scale geochemical heterogeneity. The scales have generally reached sub-millimetre level using various technologies, including proton induced X-ray emissions (PIXE), computer-imaging densitometry (CID), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and 2D slicing.

The field applications are still at the early testing stage. Further studies are needed to properly interpret the DGT measured results under complex environmental conditions, and standard procedures and guideline values based on DGT are required to pave the way for its routine applications in environmental monitoring.

Contact: Dr. Chaosheng Zhang, School of Geography and Archaeology, National University of Ireland, Galway, Ireland; Prof. Shiming Ding, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.

 

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Editorial 2018-12-11
  • Chemical fractionation of heavy metals in fine particulate matter and their health risk assessment through inhalation exposure pathway 2018-12-11

    Abstract

    Samples of PM2.5 were collected from an urban area close to a national highway in Agra, India and sequentially extracted into four different fractions: water soluble (F1), reducible (F2), oxidizable (F3) and residual fraction (F4) for chemical fractionation of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), nickel (Ni) and lead (Pb). The metals were analyzed by inductively coupled plasma optical emission spectroscopy in each fraction. The average mass concentration of PM2.5 was 93 ± 24 μg m−3.The total concentrations of Cr, Pb, Ni, Co, As and Cd in fine particle were 192 ± 54, 128 ± 25, 108 ± 34, 36 ± 6, 35 ± 5 and 8 ± 2 ng m−3, respectively. Results indicated that Cd and Co had the most bioavailability indexes. Risk Assessment Code and contamination factors were calculated to assess the environmental risk. The present study evaluated the potential Pb hazard to young children using the Integrated Exposure Uptake Biokinetic Model. From the model, the probability density of PbB (blood lead level) revealed that at the prevailing atmospheric concentration, 0.302 children are expected to have PbB concentrations exceeding 10 μg dL−1 and an estimated IQ (intelligence quotient) loss of 1.8 points. The predicted blood Pb levels belong to Group 3 (PbB < 5 μg dL−1). Based on the bioavailable fractions, carcinogenic and non-carcinogenic risks via inhalation exposure were assessed for infants, toddlers, children, males and females. The hazard index for potential toxic metals was 2.50, which was higher than the safe limit (1). However, the combined carcinogenic risk for infants, toddlers, children, males and females was marginally higher than the precautionary criterion (10−6).

  • Effects of steel slag and biochar amendments on CO 2 , CH 4 , and N 2 O flux, and rice productivity in a subtropical Chinese paddy field 2018-12-07

    Abstract

    Steel slag, a by-product of the steel industry, contains high amounts of active iron oxide and silica which can act as an oxidizing agent in agricultural soils. Biochar is a rich source of carbon, and the combined application of biochar and steel slag is assumed to have positive impacts on soil properties as well as plant growth, which are yet to be validated scientifically. We conducted a field experiment for two rice paddies (early and late paddy) to determine the individual and combined effects of steel slag and biochar amendments on CO2, CH4, and N2O emission, and rice productivity in a subtropical paddy field of China. The amendments did not significantly affect rice yield. It was observed that CO2 was the main greenhouse gas emitted from all treatments of both paddies. Steel slag decreased the cumulative CO2 flux in the late paddy. Biochar as well as steel slag + biochar treatment decreased the cumulative CO2 flux in the late paddy and for the complete year (early and late paddy), while steel slag + biochar treatment also decreased the cumulative CH4 flux in the early paddy. The biochar, and steel slag + biochar amendments decreased the global warming potential (GWP). Interestingly, the cumulative annual GWP was lower for the biochar (55,422 kg CO2-eq ha−1), and steel slag + biochar (53,965 kg CO2-eq ha−1) treatments than the control (68,962 kg CO2-eq ha−1). Total GWP per unit yield was lower for the combined application of steel slag + biochar (8951 kg CO2-eq Mg−1 yield) compared to the control (12,805 kg CO2-eq Mg−1 yield). This study suggested that the combined application of steel slag and biochar could be an effective long-term strategy to reduce greenhouse gases emission from paddies without any detrimental effect on the yield.