SEGH Articles

Dust Deposition in snow from NorthEast Antarctica: mineralogical, morphological and chemical characterization

05 October 2014
Aubry Vanderstraeten is a PhD student and won the runner-up prize for best student poster at SEGH 2014.


Mineral dusts are a major source of micronutrients (e.g. Fe) that limit phytoplankton growth in the open ocean, in particular in the so-called “High Nutrient Low Chlorophyll” (HNLC) oceanic zones. The southern Ocean is by far the largest of all HNLC regions and thus has the potential to greatly enhance the biological CO2 pump at the global scale. As the aerosol fluxes and sources in the southern Ocean are not well constrained and the potential impact of anthropogenic airborne particles may be larger than expected, a multidisciplinary study is being carried out on dust-bearing snow samples collected in NE Antarctica. Our goals are multiple: (i) determine the mineralogy, morphology and chemical composition of these dusts and, (ii) quantify, by using heavy stable isotopic signatures, the origin and the relative contribution of desert-derived, volcanic and anthropogenic particles in the dust, (iii) estimate the bioavailable fraction of bio-essential elements such as Fe through chemical extraction.

Snow samples were collected at four sites: two a few kilometres from the sea, at the summit of the Derwael Ice Rise (about 200km North of the Belgian Princess Elisabeth Station) and two other locations in a continental area (~225km inland) around the Princess Elisabeth station in the Sør Rondane Mountains. Three litres of snow from each site were melted and filtrated on 0.2 µm poresize NucleporeÓ polycarbonate filters in an ISO 5-class clean room. Subsequently, a series of single particle analyses were performed by (i) FEG-SEM (Field Emission Gun-Scanning Electron Microscopy) to determine particles-size distribution of dust; (ii) automated-SEM-EDS (Energy Dispersive Spectroscopy) to estimate the chemical composition of individual dust particles; (iii) TEM-SAED analysis (Transmission Electron Microscopy Selected Area Electron Diffraction) to identify the minerals present. In addition, trace element compositions of the bulk samples were analyzed by high-resolution ICP-MS.

Preliminary data in elemental composition and mineralogy indicate similarities between dust samples and the rock-forming minerals from the Sør Rondane Mountains suggesting a local dust source. However, major distinctions can be made between coastal and inland dust samples: (i) mineralogical distributions are very distinct; (ii) a large proportion of the quartz and feldspath dust particles exhibit surprisingly enrichment in iron (less than 20% of particles for inland samples and up to 80% for coastal samples), which is probably due to surface Fe-rich coating/aggregates; (iii) coastal samples are heavily enriched (vs. upper continental crust reference values) in Pb and Ni. These Fe, Pb and Ni enrichment trends tend to suggest an external and distal source of dust at the coast, potentially impacted by anthropogenic activities.

To complement those preliminary results, new sampling campaign will take place in December 2014 at the same locations to acquire large quantity of snow. In addition, passive dust collectors will be placed for a period of one year along a transect connecting the Sør Rondane Mountains and the Derwael Ice Rise. The perspectives of this new sampling campaign aim to fulfil our analysis plan through isotopic analyses and chemical extractions.

This in-depth characterisation study will improve our knowledge and understanding of dusts reaching the coast of NE-Antarctica, which represent a proxy of the dust materials supplied to the Southern Ocean. 

by Aubry Vanderstraeten, PhD student

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Improving arsenopyrite oxidation rate laws: implications for arsenic mobilization during aquifer storage and recovery (ASR) 2018-04-25


    Aquifer storage and recovery (ASR) and aquifer recharge (AR) provide technical solutions to address water supply deficits and growing future water demands. Unfortunately, the mobilization of naturally present arsenic due to ASR/AR operations has undermined its application on a larger scale. Predicting arsenic mobility in the subsurface during ASR/AR is further complicated by site-specific factors, including the arsenic mobilization mechanisms, groundwater flow conditions, and multi-phase geochemical interactions. In order to ensure safe and sustainable ASR/AR operation, a better understanding of these factors is needed. The current study thus aims to better characterize and model arsenic remobilization at ASR/AR sites by compiling and analyzing available kinetic data on arsenic mobilization from arsenopyrite under different aqueous conditions. More robust and widely applicable rate laws are developed for geochemical conditions relevant to ASR/AR. Sensitivity analysis of these new rate laws gives further insight into the controlling geochemical factors for arsenic mobilization. When improved rate laws are incorporated as the inputs for reactive transport modeling, arsenic mobilization in ASR/AR operations can be predicted with an improved accuracy. The outcomes will be used to guide groundwater monitoring and specify ASR/AR operational parameters, including water pretreatment requirements prior to injection.

  • Heavy metal exposure has adverse effects on the growth and development of preschool children 2018-04-25


    The purpose of this study was to investigate the associations between levels of lead (Pb), cadmium (Cd), chromium (Cr), and manganese (Mn) in the PM2.5 and blood and physical growth, and development parameters including birth length and weight, height, weight, body mass index (BMI), head circumference, and chest circumference in preschool children from Guiyu (e-waste exposure area) and Haojiang (the reference area). A total of 470 preschool children from Guiyu and Haojiang located in southeast coast of China were recruited and required to undergo physical examination and blood tests during the study period. Birth length and weight were obtained by birth records and questionnaire. Pb and Cd in both PM2.5 and blood were significantly higher in Guiyu than Haojiang. Remarkably, the children of Guiyu had significantly lower birth weight and length, BMI, and chest circumference when compare to their peers from the reference area (all p value < 0.05). Spearman correlation analyses showed that blood Pb was negatively correlated with height (r = −0.130, p < 0.001), weight (r = −0.169, p < 0.001), BMI (r = −0.100, p < 0.05), head circumference (r = −0.095, p < 0.05), and chest circumference (r = −0.112, p < 0.05). After adjustment for the potential confounders in further linear regression analyses, blood Pb was negatively associated with height (β = −0.066, p < 0.05), weight (β = −0.119, p < 0.001), head circumference (β = −0.123, p < 0.01), and chest circumference (β = −0.104, p < 0.05), respectively. No significant association between blood Cd, Cr, or Mn was found with any of our developmental outcomes. Taken together, lead exposure limits or delays the growth and development of preschool children.

  • Contamination characteristics of trace metals in dust from different levels of roads of a heavily air-polluted city in north China 2018-04-24


    Concentrations of eight trace metals (TMs) in road dust (RD) (particles < 25 μm) from urban areas of Xinxiang, China, were determined by inductively coupled plasma mass spectrometry. The geometric mean concentrations of Zn, Mn, Pb, As, Cu, Cr, Ni and Cd were 489, 350, 114, 101, 60.0, 39.7, 31.6, and 5.1 mg kg−1, respectively. When compared with TM levels in background soil, the samples generally display elevated TM concentrations, except for Cr and Mn, and for Cd the enrichment value was 69.6. Spatial variations indicated TMs in RD from park path would have similar sources with main roads, collector streets and bypasses. Average daily exposure doses of the studied TMs were about three orders of magnitude higher for hand-to-mouth ingestion than dermal contact, and the exposure doses for children were 9.33 times higher than that for adults. The decreasing trend of calculated hazard indexes (HI) for the eight elements was As > Pb > Cr > Mn > Cd > Zn > Ni > Cu for both children and adults.