SEGH Articles

Dust Deposition in snow from NorthEast Antarctica: mineralogical, morphological and chemical characterization

05 October 2014
Aubry Vanderstraeten is a PhD student and won the runner-up prize for best student poster at SEGH 2014.

 

Mineral dusts are a major source of micronutrients (e.g. Fe) that limit phytoplankton growth in the open ocean, in particular in the so-called “High Nutrient Low Chlorophyll” (HNLC) oceanic zones. The southern Ocean is by far the largest of all HNLC regions and thus has the potential to greatly enhance the biological CO2 pump at the global scale. As the aerosol fluxes and sources in the southern Ocean are not well constrained and the potential impact of anthropogenic airborne particles may be larger than expected, a multidisciplinary study is being carried out on dust-bearing snow samples collected in NE Antarctica. Our goals are multiple: (i) determine the mineralogy, morphology and chemical composition of these dusts and, (ii) quantify, by using heavy stable isotopic signatures, the origin and the relative contribution of desert-derived, volcanic and anthropogenic particles in the dust, (iii) estimate the bioavailable fraction of bio-essential elements such as Fe through chemical extraction.

Snow samples were collected at four sites: two a few kilometres from the sea, at the summit of the Derwael Ice Rise (about 200km North of the Belgian Princess Elisabeth Station) and two other locations in a continental area (~225km inland) around the Princess Elisabeth station in the Sør Rondane Mountains. Three litres of snow from each site were melted and filtrated on 0.2 µm poresize NucleporeÓ polycarbonate filters in an ISO 5-class clean room. Subsequently, a series of single particle analyses were performed by (i) FEG-SEM (Field Emission Gun-Scanning Electron Microscopy) to determine particles-size distribution of dust; (ii) automated-SEM-EDS (Energy Dispersive Spectroscopy) to estimate the chemical composition of individual dust particles; (iii) TEM-SAED analysis (Transmission Electron Microscopy Selected Area Electron Diffraction) to identify the minerals present. In addition, trace element compositions of the bulk samples were analyzed by high-resolution ICP-MS.

Preliminary data in elemental composition and mineralogy indicate similarities between dust samples and the rock-forming minerals from the Sør Rondane Mountains suggesting a local dust source. However, major distinctions can be made between coastal and inland dust samples: (i) mineralogical distributions are very distinct; (ii) a large proportion of the quartz and feldspath dust particles exhibit surprisingly enrichment in iron (less than 20% of particles for inland samples and up to 80% for coastal samples), which is probably due to surface Fe-rich coating/aggregates; (iii) coastal samples are heavily enriched (vs. upper continental crust reference values) in Pb and Ni. These Fe, Pb and Ni enrichment trends tend to suggest an external and distal source of dust at the coast, potentially impacted by anthropogenic activities.

To complement those preliminary results, new sampling campaign will take place in December 2014 at the same locations to acquire large quantity of snow. In addition, passive dust collectors will be placed for a period of one year along a transect connecting the Sør Rondane Mountains and the Derwael Ice Rise. The perspectives of this new sampling campaign aim to fulfil our analysis plan through isotopic analyses and chemical extractions.

This in-depth characterisation study will improve our knowledge and understanding of dusts reaching the coast of NE-Antarctica, which represent a proxy of the dust materials supplied to the Southern Ocean. 

by Aubry Vanderstraeten, PhD student

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Spatial variability and geochemistry of rare earth elements in soils from the largest uranium–phosphate deposit of Brazil 2018-02-22

    Abstract

    The Itataia uranium–phosphate deposit is the largest uranium reserve in Brazil. Rare earth elements (REEs) are commonly associated with phosphate deposits; however, there are no studies on the concentrations of REEs in soils of the Itataia deposit region. Thus, the objective of the research was to evaluate the concentration and spatial variability of REEs in topsoils of Itataia phosphate deposit region. In addition, the influence of soil properties on the geochemistry of REEs was investigated. Results showed that relatively high mean concentrations (mg kg−1) of heavy REEs (Gd 6.01; Tb 1.25; Ho 1.15; Er 4.05; Tm 0.64; Yb 4.61; Lu 0.65) were found in surface soils samples. Soil properties showed weak influence on the geochemical behavior of REEs in soils, except for the clay content. On the other hand, parent material characteristics, such as P and U, had strong influence on REEs concentrations. Spatial distribution patterns of REEs in soils are clearly associated with P and U contents. Therefore, geochemical surveys aiming at the delineation of ore-bearing zones in the region can benefit from our data. The results of this work reinforce the perspective for co-mining of P, U and REEs in this important P–U reserve.

  • 2017 Outstanding Reviewers 2018-02-21
  • Seasonal occurrence, source evaluation and ecological risk assessment of polycyclic aromatic hydrocarbons in industrial and agricultural effluents discharged in Wadi El Bey (Tunisia) 2018-02-13

    Abstract

    Polycyclic aromatic hydrocarbons are of great concern due to their persistence, bioaccumulation and toxic properties. The occurrence, source and ecological risk assessment of 26 polycyclic aromatic hydrocarbons in industrial and agricultural effluents affecting the Wadi El Bey watershed were investigated by means of gas chromatographic/mass spectrometric analysis (GC/MS). Total PAHs (∑ 26 PAH) ranged from 1.21 to 91.7 µg/L. The 4- and 5-ring compounds were the principal PAHs detected in most of 5 sites examined. Diagnostic concentration ratios and molecular indices were performed to identify the PAH sources. Results show that PAHs could originate from petrogenic, pyrolytic and mixed sources. According to the ecotoxicological assessment, the potential risk associated with PAHs affecting agricultural and industrial effluents ranged from moderate to high for both aquatic ecosystem and human health. The toxic equivalency factor (TEF) approach indicated that benzo[a]pyrene and benz[a]anthracene were the principal responsible for carcinogenic power of samples.