SEGH Articles

Ecosystem services to alleviate micronutrient malnutrition in Sub Saharan Africa

20 May 2011
Ecosystem Services concepts have great potential for linking biogeochemistry, health and policy formulation for poverty alleviation.

Mineral malnutrition due to environmental and cultural factors is widespread in sub-Saharan Africa (SSA).  A multi-national research consortia led by the University of Nottingham (UoN) undertook a pump priming project to explore if Ecosystem Services could provide an effective conceptual framework to link biogeochemical cycles of dietary minerals and poverty.  The project initially focussed on iodine, selenium and zinc in Malawi and Zambia.  Through data integration, feasibility studies, networking and capacity building we addressed three target themes: Biogeochemistry, Nutrition, and Economics.

Biogeochemistry: we developed a new GIS (ArcGIS) framework linking soil and land-use data has been submitted for open-access peer review publication.  New geochemical data for soils and vegetation were incorporated from an aligned project (UoN) and other spatial data (e.g. DFID FarmLime, BGS). Through integration of soil types in GIS, we have found that the population Se intake from maize is typically 6-7 µg Se per day, which represents ~10% of the dietary requirements for Se. Since maize provides the majority of dietary energy to the rural poor of SSA, this study revealed for the first time that chronic Se deficiency is endemic for the majority of the population and is largely influenced by input from soil.

Major knowledge gaps still exist.  Further  sampling, capacity building and data integration activities were therefore planned at a workshop in Lilongwe in September 2010 with multiple government departments and regional academics for future funding application.









Nutrition: a feasibility study was completed to study the spatial variation in I, Se and Zn dietary intake and status  in Malawi as a case study.  The National Health Sciences Research Committee of the Malawi Ministry of health granted ethical approval for dietary and biomarker surveys and intake analyses across several villages.  Importantly, sensitisation visits to the villages and farmers was undertaken by extension services, Ministry of Health and PI's.  Data showing strong geochemical control of intake and status, and these will be submitted for publication later in 2011. 

Economics: a novel Ecosystem Services framework was developed based on: modelling soil-to-diet relationship using mineral / dietary-energy units; food choices and land-use; quantifying relationship between disease burdens and poverty at population levels. Economic analyses were formalised using World Health Organisation Disability Adjusted Life Years (DALYS), which incorporated a willingness to pay for intervention.   Such analyses provide a useful policy tool at national and regional scales. 

For example: despite limited data, a pilot analysis estimated that 3,955 healthy life years (DALYS) per 1m population per year are lost each year in Malawi due to Zn deficiency alone, mostly due to infant mortality.  This represents an economic loss to Malawi of >1% GDP per year.  Economic analyses for I, Se and other elements requires more data. 

This work was funded via the Ecosystem Service Poverty Alleviation programme by UK DFID-NERC.

Project partners included: British Geological Survey, University of East Anglia, Genius Consultancy, University of Sabanci, University of Adelaide, University of Otago, University of Malawi, University of Zambia, Ministry of Agriculture & Health (Malawi).

Dr Martin Broadley, University of Nottingham.





Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Biochar-based constructed wetlands to treat reverse osmosis rejected concentrates in chronic kidney disease endemic areas in Sri Lanka 2017-12-01


    The objectives were to investigate the potential remedial measures for reverse osmosis (RO) rejected water through constructed wetlands (CWs) with low-cost materials in the media established in chronic kidney disease of unknown etiology (CKDu) prevalent area in Sri Lanka. A pilot-scale surface and subsurface water CWs were established at the Medawachchiya community-based RO water supply unit. Locally available soil, calicut tile and biochar were used in proportions of 81, 16.5 and 2.5% (w/w), respectively, as filter materials in the subsurface. Vetiver grass and Scirpus grossus were selected for subsurface wetland while water lettuce and water hyacinth were chosen for free water surface CWs. Results showed that the CKDu sensitive parameters; total dissolved solids, hardness, total alkalinity and fluoride were reduced considerably (20–85%) and most met desirable levels of stipulated ambient standards. Biochar seemed to play a major role in removing fluoride from the system which may be due to the existing and adsorbed K+, Ca+2, Mg+2, etc. on the biochar surface via chemisorption. The least reduction was observed for alkalinity. This study indicated potential purification of aforesaid ions in water which are considerably present in RO rejection. Therefore, the invented bio-geo constructed wetland can be considered as a sustainable, economical and effective option for reducing high concentrations of CKDu sensitive parameters in RO rejected water before discharging into the inland waters.

  • Medical geology of endemic goiter in Kalutara, Sri Lanka; distribution and possible causes 2017-12-01


    This study assesses the distribution of goiter in the Kalutara District, Sri Lanka in order to find causative factors for the occurrence of goiter even after the salt iodization. A questionnaire survey was conducted at the household level and at the same time iodine and selenium levels of the water sources were analyzed. Questionnaire survey results indicated the highest numbers of goiter patients in the northern part where the lowest were found in the southern sector which may be due to the presence of acid sulfate soils. Females were more susceptible and it even showed a transmittance between generations. Average iodine concentrations in subsurface water of goiter endemic regions are 28.25 ± 15.47 μg/L whereas non-goiter regions show identical values at 24.74 ± 18.29 μg/L. Surface water exhibited relatively high values at 30.87 ± 16.13 μg/L. Endemic goiter was reported in some isolated patches where iodine and selenium concentrations low, latter was <10 μg/L. The formation of acid sulfate soils in the marshy lands in Kalutara district may lead to transformation of biological available iodine oxidation into volatile iodine by humic substances, at the same time organic matter rich peaty soil may have strong held of iodine and selenium which again induced by low pH and high temperature were suggested as the instrumental factors in the endemic goiter in Kalutara district. Hence, geochemical features such as soil pH, organic matter and thick lateritic cap in the Kalutara goiter endemic area play a role in controlling the available selenium and iodine for food chain through plant uptake and in water.

  • Nickel accumulation in paddy rice on serpentine soils containing high geogenic nickel contents in Taiwan 2017-12-01


    We investigated the extractability of nickel (Ni) in serpentine soils collected from rice paddy fields in eastern Taiwan to evaluate the bioavailability of Ni in the soils as well as for demonstrating the health risks of Ni in rice. Total Ni concentrations in the soils ranged were 70.2–2730 mg/kg (mean, 472 mg/kg), greatly exceeding the natural background content and soil control standard in Taiwan. Available Ni concentration only accounts for <10% of total soil Ni content; 0.1 N HCl-extractable Ni was the more suitable index for Ni bioavailability in the soil to rice than was diethylenetriaminepentaacetic acid (DTPA)-extractable Ni. The accumulation ability of rice roots was much higher than that of its shoots; however, compared with those reported previously, our brown and polished rice samples contained much higher Ni concentrations, within the ranges of 1.50–4.53 and 2.45–5.54 mg/kg, respectively. On the basis of the provisional tolerable Ni intake for adults recommended by the World Health Organization (WHO), daily consumption of this rice can result in an excessive Ni intake.