SEGH Articles

Ecosystem services to alleviate micronutrient malnutrition in Sub Saharan Africa

20 May 2011
Ecosystem Services concepts have great potential for linking biogeochemistry, health and policy formulation for poverty alleviation.

Mineral malnutrition due to environmental and cultural factors is widespread in sub-Saharan Africa (SSA).  A multi-national research consortia led by the University of Nottingham (UoN) undertook a pump priming project to explore if Ecosystem Services could provide an effective conceptual framework to link biogeochemical cycles of dietary minerals and poverty.  The project initially focussed on iodine, selenium and zinc in Malawi and Zambia.  Through data integration, feasibility studies, networking and capacity building we addressed three target themes: Biogeochemistry, Nutrition, and Economics.

Biogeochemistry: we developed a new GIS (ArcGIS) framework linking soil and land-use data has been submitted for open-access peer review publication.  New geochemical data for soils and vegetation were incorporated from an aligned project (UoN) and other spatial data (e.g. DFID FarmLime, BGS). Through integration of soil types in GIS, we have found that the population Se intake from maize is typically 6-7 µg Se per day, which represents ~10% of the dietary requirements for Se. Since maize provides the majority of dietary energy to the rural poor of SSA, this study revealed for the first time that chronic Se deficiency is endemic for the majority of the population and is largely influenced by input from soil.

Major knowledge gaps still exist.  Further  sampling, capacity building and data integration activities were therefore planned at a workshop in Lilongwe in September 2010 with multiple government departments and regional academics for future funding application.

  

 

 

 

 

 

 

 

Nutrition: a feasibility study was completed to study the spatial variation in I, Se and Zn dietary intake and status  in Malawi as a case study.  The National Health Sciences Research Committee of the Malawi Ministry of health granted ethical approval for dietary and biomarker surveys and intake analyses across several villages.  Importantly, sensitisation visits to the villages and farmers was undertaken by extension services, Ministry of Health and PI's.  Data showing strong geochemical control of intake and status, and these will be submitted for publication later in 2011. 

Economics: a novel Ecosystem Services framework was developed based on: modelling soil-to-diet relationship using mineral / dietary-energy units; food choices and land-use; quantifying relationship between disease burdens and poverty at population levels. Economic analyses were formalised using World Health Organisation Disability Adjusted Life Years (DALYS), which incorporated a willingness to pay for intervention.   Such analyses provide a useful policy tool at national and regional scales. 

For example: despite limited data, a pilot analysis estimated that 3,955 healthy life years (DALYS) per 1m population per year are lost each year in Malawi due to Zn deficiency alone, mostly due to infant mortality.  This represents an economic loss to Malawi of >1% GDP per year.  Economic analyses for I, Se and other elements requires more data. 

This work was funded via the Ecosystem Service Poverty Alleviation programme by UK DFID-NERC.

Project partners included: British Geological Survey, University of East Anglia, Genius Consultancy, University of Sabanci, University of Adelaide, University of Otago, University of Malawi, University of Zambia, Ministry of Agriculture & Health (Malawi).

Dr Martin Broadley, University of Nottingham.  martin.broadley@nottingham.ac.uk

 

 

 

 

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Characteristics of PM 2.5 , CO 2 and particle-number concentration in mass transit railway carriages in Hong Kong 2017-08-01

    Abstract

    Fine particulate matter (PM2.5) levels, carbon dioxide (CO2) levels and particle-number concentrations (PNC) were monitored in train carriages on seven routes of the mass transit railway in Hong Kong between March and May 2014, using real-time monitoring instruments. The 8-h average PM2.5 levels in carriages on the seven routes ranged from 24.1 to 49.8 µg/m3, higher than levels in Finland and similar to those in New York, and in most cases exceeding the standard set by the World Health Organisation (25 µg/m3). The CO2 concentration ranged from 714 to 1801 ppm on four of the routes, generally exceeding indoor air quality guidelines (1000 ppm over 8 h) and reaching levels as high as those in Beijing. PNC ranged from 1506 to 11,570 particles/cm3, lower than readings in Sydney and higher than readings in Taipei. Correlation analysis indicated that the number of passengers in a given carriage did not affect the PM2.5 concentration or PNC in the carriage. However, a significant positive correlation (p < 0.001, R 2 = 0.834) was observed between passenger numbers and CO2 levels, with each passenger contributing approximately 7.7–9.8 ppm of CO2. The real-time measurements of PM2.5 and PNC varied considerably, rising when carriage doors opened on arrival at a station and when passengers inside the carriage were more active. This suggests that air pollutants outside the train and passenger movements may contribute to PM2.5 levels and PNC. Assessment of the risk associated with PM2.5 exposure revealed that children are most severely affected by PM2.5 pollution, followed in order by juveniles, adults and the elderly. In addition, females were found to be more vulnerable to PM2.5 pollution than males (p < 0.001), and different subway lines were associated with different levels of risk.

  • Comparison of chemical compositions in air particulate matter during summer and winter in Beijing, China 2017-08-01

    Abstract

    The development of industry in Beijing, the capital of China, particularly in last decades, has caused severe environmental pollution including particulate matter (PM), dust–haze, and photochemical smog, which has already caused considerable harm to local ecological environment. Thus, in this study, air particle samples were continuously collected in August and December, 2014. And elements (Si, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Cd, Ba, Pb and Ti) and ions ( \({\text{NO}}_{3}^{-}\) , \({\text{SO}}_{4}^{2-}\) , F, Cl, Na+, K+, Mg2+, Ca2+ and \({\text{NH}}_{4}^{+}\) ) were analyzed by inductively coupled plasma mass spectrometer and ion chromatography. According to seasonal changes, discuss the various pollution situations in order to find possible particulate matter sources and then propose appropriate control strategies to local government. The results indicated serious PM and metallic pollution in some sampling days, especially in December. Chemical Mass Balance model revealed central heating activities, road dust and vehicles contribute as main sources, account for 5.84–32.05 % differently to the summer and winter air pollution in 2014.

  • Annual ambient atmospheric mercury speciation measurement from Longjing, a rural site in Taiwan 2017-08-01

    Abstract

    The main purpose of this study was to monitor ambient air particulates and mercury species [RGM, Hg(p), GEM and total mercury] concentrations and dry depositions over rural area at Longjing in central Taiwan during October 2014 to September 2015. In addition, passive air sampler and knife-edge surrogate surface samplers were used to collect the ambient air mercury species concentrations and dry depositions, respectively, in this study. Moreover, direct mercury analyzer was directly used to detect the mercury Hg(p) and RGM concentrations. The result indicated that: (1) The average highest RGM, Hg(p), GEM and total mercury concentrations, and dry depositions were observed in January, prevailing dust storm occurred in winter season was the possible major reason responsible for the above findings. (2) The highest average RGM, Hg(p), GEM and total mercury concentrations, dry depositions and velocities were occurred in winter. This is because that China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. (3) The results indicated that the total mercury ratios of Kaohsiung to that of this study were 5.61. This is because that Kaohsiung has the largest industry density (~60 %) in Taiwan. (4) the USA showed average lower mercury species concentrations when compared to those of the other world countries. The average ratios of China/USA values were 89, 76 and 160 for total mercury, RGM and Hg(p), respectively, during the years of 2000–2012.