SEGH Articles

Ecosystem services to alleviate micronutrient malnutrition in Sub Saharan Africa

20 May 2011
Ecosystem Services concepts have great potential for linking biogeochemistry, health and policy formulation for poverty alleviation.

Mineral malnutrition due to environmental and cultural factors is widespread in sub-Saharan Africa (SSA).  A multi-national research consortia led by the University of Nottingham (UoN) undertook a pump priming project to explore if Ecosystem Services could provide an effective conceptual framework to link biogeochemical cycles of dietary minerals and poverty.  The project initially focussed on iodine, selenium and zinc in Malawi and Zambia.  Through data integration, feasibility studies, networking and capacity building we addressed three target themes: Biogeochemistry, Nutrition, and Economics.

Biogeochemistry: we developed a new GIS (ArcGIS) framework linking soil and land-use data has been submitted for open-access peer review publication.  New geochemical data for soils and vegetation were incorporated from an aligned project (UoN) and other spatial data (e.g. DFID FarmLime, BGS). Through integration of soil types in GIS, we have found that the population Se intake from maize is typically 6-7 µg Se per day, which represents ~10% of the dietary requirements for Se. Since maize provides the majority of dietary energy to the rural poor of SSA, this study revealed for the first time that chronic Se deficiency is endemic for the majority of the population and is largely influenced by input from soil.

Major knowledge gaps still exist.  Further  sampling, capacity building and data integration activities were therefore planned at a workshop in Lilongwe in September 2010 with multiple government departments and regional academics for future funding application.

  

 

 

 

 

 

 

 

Nutrition: a feasibility study was completed to study the spatial variation in I, Se and Zn dietary intake and status  in Malawi as a case study.  The National Health Sciences Research Committee of the Malawi Ministry of health granted ethical approval for dietary and biomarker surveys and intake analyses across several villages.  Importantly, sensitisation visits to the villages and farmers was undertaken by extension services, Ministry of Health and PI's.  Data showing strong geochemical control of intake and status, and these will be submitted for publication later in 2011. 

Economics: a novel Ecosystem Services framework was developed based on: modelling soil-to-diet relationship using mineral / dietary-energy units; food choices and land-use; quantifying relationship between disease burdens and poverty at population levels. Economic analyses were formalised using World Health Organisation Disability Adjusted Life Years (DALYS), which incorporated a willingness to pay for intervention.   Such analyses provide a useful policy tool at national and regional scales. 

For example: despite limited data, a pilot analysis estimated that 3,955 healthy life years (DALYS) per 1m population per year are lost each year in Malawi due to Zn deficiency alone, mostly due to infant mortality.  This represents an economic loss to Malawi of >1% GDP per year.  Economic analyses for I, Se and other elements requires more data. 

This work was funded via the Ecosystem Service Poverty Alleviation programme by UK DFID-NERC.

Project partners included: British Geological Survey, University of East Anglia, Genius Consultancy, University of Sabanci, University of Adelaide, University of Otago, University of Malawi, University of Zambia, Ministry of Agriculture & Health (Malawi).

Dr Martin Broadley, University of Nottingham.  martin.broadley@nottingham.ac.uk

 

 

 

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Membrane fouling control by Ca 2+ during coagulation–ultrafiltration process for algal-rich water treatment 2019-04-16

    Abstract

    Seasonal algal bloom, a water supply issue worldwide, can be efficiently solved by membrane technology. However, membranes typically suffer from serious fouling, which hinders the wide application of this technology. In this study, the feasibility of adding Ca2+ to control membrane fouling in coagulation–membrane treatment of algal-rich water was investigated. According to the results obtained, the normalized membrane flux decreased by a lower extent upon increasing the concentration of Ca2+ from 0 to 10 mmol/L. Simultaneously, the floc particle size increased significantly with the concentration of Ca2+, which leads to a lower hydraulic resistance. The coagulation performance is also enhanced with the concentration of Ca2+, inducing a slight osmotic pressure-induced resistance. The formation of Ca2+ coagulation flocs resulted in a looser, thin, and permeable cake layer on the membrane surface. This cake layer rejected organic pollutants and could be easily removed by physical and chemical cleaning treatments, as revealed by scanning electron microscopy images. The hydraulic irreversible membrane resistance was significantly reduced upon addition of Ca2+. All these findings suggest that the addition of Ca2+ may provide a simple-operation, cost-effective, and environmentally friendly technology for controlling membrane fouling during coagulation–membrane process for algal-rich water treatment.

  • Evaluation of the raw water quality: physicochemical and toxicological approaches 2019-04-13

    Abstract

    Environmental degradation has increased, mainly as a result of anthropogenic effects arising from population, industrial and agricultural growth. Water pollution is a problem that affects health, safety and welfare of the whole biota which shares the same environment. In Goiânia and metropolitan region, the main water body is the Meia Ponte River that is used for the abstraction of water, disposal of treated wastewater and effluents. In addition, this river receives wastewater from urban and rural areas. The aim in this present study was to evaluate the quality of raw water by some physical, chemical and toxicological tests. The physicochemical results found high levels of turbidity, conductivity, aluminum, phosphorus and metal iron, manganese, copper and lithium when compared to the standards of the Brazilian legislation. The values found of toxicity demonstrated a high degree of cytotoxicity and genotoxicity. Therefore, it was concluded that the Meia Ponte River has been undergoing constant environmental degradation, causing the poor quality of its waters. Thus, measures for the prevention and recovery should be adopted for the maintenance of the Meia Ponte River.

  • Review of the nature of some geophagic materials and their potential health effects on pregnant women: some examples from Africa 2019-04-11

    Abstract

    The voluntary human consumption of soil known as geophagy is a global practice and deep-rooted in many African cultures. The nature of geophagic material varies widely from the types to the composition. Generally, clay and termite mound soils are the main materials consumed by geophagists. Several studies revealed that gestating women across the world consume more soil than other groups for numerous motives. These motivations are related to medicinal, cultural and nutrients supplementation. Although geophagy in pregnancy (GiP) is a universal dynamic habit, the highest prevalence has been reported in African countries such as Kenya, Ghana, Rwanda, Nigeria, Tanzania, and South Africa. Geophagy can be both beneficial and detrimental. Its health effects depend on the amount and composition of the ingested soils, which is subjective to the geology and soil formation processes. In most cases, the negative health effects concomitant with the practice of geophagy eclipse the positive effects. Therefore, knowledge about the nature of geophagic material and the health effects that might arise from their consumption is important.