SEGH Articles

Emerging Contaminants in the environment – is there a risk to health?

12 August 2012
In Europe and North America, there has been a gradual decrease in common environmental contaminants (heavy metals such as lead, cadmium; persistent organic pollutants such as DDT, Dioxin, PAH’s) in the environment. Common environmental contaminants, however, remain a public health concern in developing countries and newly industrialised countries.

 

In Europe and North America, there has been a gradual decrease in common environmental contaminants (heavy metals such as lead, cadmium; persistent organic pollutants such as DDT, Dioxin, PAH’s) in the environment. This improvement is largely due to a concerted effort of stricter regulations with improved monitoring, cleaner industrial processes and increased public awareness. Common environmental contaminants, however, remain a public health concern in developing countries and newly industrialised countries.

As we experience a decline in the levels and point sources of common chemicals, the focus has now been on the chemicals which were previously not considered as contaminants. They are not geogenic or air-born but are mainly synthetic by nature and produced to offer a range of societal benefits. Unlike common contaminants, ‘emerging chemical contaminants’ mostly find their way to the environment via diffuse sources i.e. domestic, commercial, and industrial uses. In addition, the development of more sensitive and new analytical capabilities that allows scientist to identify contaminants which are typically present in ultra-low concentrations (parts per billion to parts per trillion). The low concentrations combined with a lack of toxicological evidence make hazard characterisation technically challenging and thus the regulatory standards, where available, tend to be less rigorous and are advisory rather than prescriptive. In some cases (e.g. flame retardants) there are difficulties in identifying safer alternatives even when new evidence emerges about the health risk from the currently used materials.

Some examples of emerging contaminants include: perfluorocarbons ((e.g. perfluorooctane sulfonate (PFOS)), perfluorooctanoic acid (PFOA)), pesticides residues/metabolites (e.g. metaldehyde), pharmaceuticals and personal care products (e.g. steroids and antibiotics, fragrances, cosmetics), nanomaterials (e.g. buckeyballs or fullerenes; carbon nanotubes). These chemicals or their parent products are being manufactured to improve the quality and safety or to increase the efficiency in industrial processes. By nature, they are intended to last long or be resistant to microbial degradation in the environment. For example, PFCs contains only carbon and fluorine bonded together in strong carbon­-fluorine bonds which made them chemically inert and thermally stable. When these chemicals (e.g. PFOS, antibiotics, steroids) are released to the public sewer system, conventional water treatment processes can do little to render them harmless and go unabated to enter the wider environment and biotic food chain as a pollutant.

Our knowledge to relate the presence of emerging chemicals in the environment with public health significance is still at its infancy. Bioassays with animal models indicate the potential for toxicity to humans if exposed to a very high doses but such high dose exposure is unrealistic when compared to typical environmental concentrations. Uncertainty, however, remains over the potential health impacts from a low level chronic exposure due to their persistence and bioaccumulative nature. Studies with ecological receptors e.g. with fish in streams contaminated by steroids have shown evidence of hormone disruption. There is also concern that elevated exposure to antibiotics in water could lead to disease-resistant strains of bacteria, reducing the effectiveness of the current class of drugs. For the human population, the limited data available suggests that there is a need for more “prospective cohort” type study to characterise the association between environmental exposure to these substances, appropriate biomarkers and measurable health outcomes.

 

Emerging chemicals should be a source of concern to ecological and public health in all parts of the world. In this era of financial constraint and interdependent/connected economies, there is a need for shared research programme and data-sharing to enhance analytical capacity to determine their environmental occurrence, fate and transport.  There is also a need for improved risk assessment tools to characterise the exposure and extrapolation of ecological risk to public health if relevant and appropriate. Regulatory policy should encompass emerging chemicals in their monitoring regime, and encourage safer alternatives, increased awareness and risk reduction programme. Societies like the SEGH can facilitate research consortia or a task force drawing from its international expertise to influence the relevant public policy and apply for research funding. Further information on emerging chemicals can be found in websites of various regulatory and public health organisations such as European Chemicals Agency, US EPA, ATSDR.    

 

Sohel Saikat, Health Protection Agency, UK.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt 2020-01-23

    Abstract

    The steady increase in the world’s population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.

    Graphic abstract

  • Plasticizers and bisphenol A in Adyar and Cooum riverine sediments, India: occurrences, sources and risk assessment 2020-01-23

    Abstract

    Adyar and Cooum, the two rivers intersecting Chennai city, are exposed to serious pollution due to the release of large quantities of dumped waste, untreated wastewater and sewage. Sediments can act as repository for emerging organic contaminants. Hence, we have monitored the occurrence and risk associated with plasticizers [six phthalic acid esters (PAEs), bis(2-ethyl hexyl adipate) (DEHA)] and bisphenol A (BPA) in surface riverine sediments of Adyar and Cooum rivers from residential/commercial, industrial and electronic waste recycling sites. Σ7plasticizers (PAEs + DEHA) in the Adyar riverine sediment (ARS) and Cooum riverine sediment (CRS) varied between 51.82–1796 and 28.13–856 ng/g, respectively. More than three-fourth of Σ7plasticizers came from bis(2-ethylhexyl) phthalate (DEHP), in accordance with the high production and usage of this compound. BPA varied between 10.70–2026 and 7.58–1398 ng/g in ARS and CRS, respectively. Average concentrations of plasticizers and BPA were four times higher in electronic waste (e-waste) recycling sites when compared with industrial and residential/commercial sites. BPA and DEHP showed a strong and significant correlation (R2 = 0.7; p < 0.01) in the e-waste sites thereby indicating common source types. Sites present at close proximity to raw sewage pumping stations contributed to 70% of the total BPA observed in this study. For the derived pore water concentration of plasticizers and BPA, the ecotoxicological risk has been found to be higher in ARS over CRS. However, sediment concentrations in all the sites of ARS and CRS were much below the recommended serious risk concentration for human (SRChuman) and serious risk concentration for ecotoxicological (SRCeco).

  • Distribution of metal(loid)s in particle size fraction in urban soil and street dust: influence of population density 2020-01-18

    Abstract

    Assessment of street dust is an invaluable approach for monitoring atmospheric pollution. Little information is available on the size distribution of contaminants in street dusts and urban soils, and it is not known how the population density would influence them. This research was carried out to assess the size distribution of trace metal(loid)s in street dust and urban soil, and to understand how population density might influence the size-resolved concentration of metal(loid)s. Three urban areas with a high, medium and low population density and a natural area were selected and urban soil and street dust sampled. They were fractionated into 8 size fractions: 2000–850, 850–180, 180–106, 106–50, 50–20, 20–10, 10–2, and < 2 µm. The concentration of Pb, Zn, Cu, Cd, Cr, Ni, As, and Fe was determined, and enrichment factor and grain size fraction loadings were computed. The results indicated that the concentration of Pb, Zn, Cu, Cd, and Cr was highly size dependent, particularly for particles < 100 µm, especially for street dust. Low concentrations of Ni and As in street dust and urban soil were size and population density independent. Higher size dependency of the metals concentration and the higher degree of elemental enrichment in the street dust fractions than the urban soils indicate higher contribution of human-induced pollution to the dust. Findings also confirm the inevitability of size fractionation when soils or dusts are environmentally assessed, particularly in moderately to highly polluted areas. Otherwise, higher concentrations of certain pollutants in fine-sized particles might be overlooked leading to inappropriate decisions for environmental remediation.