SEGH Articles

Emerging Contaminants in the environment – is there a risk to health?

12 August 2012
In Europe and North America, there has been a gradual decrease in common environmental contaminants (heavy metals such as lead, cadmium; persistent organic pollutants such as DDT, Dioxin, PAH’s) in the environment. Common environmental contaminants, however, remain a public health concern in developing countries and newly industrialised countries.


In Europe and North America, there has been a gradual decrease in common environmental contaminants (heavy metals such as lead, cadmium; persistent organic pollutants such as DDT, Dioxin, PAH’s) in the environment. This improvement is largely due to a concerted effort of stricter regulations with improved monitoring, cleaner industrial processes and increased public awareness. Common environmental contaminants, however, remain a public health concern in developing countries and newly industrialised countries.

As we experience a decline in the levels and point sources of common chemicals, the focus has now been on the chemicals which were previously not considered as contaminants. They are not geogenic or air-born but are mainly synthetic by nature and produced to offer a range of societal benefits. Unlike common contaminants, ‘emerging chemical contaminants’ mostly find their way to the environment via diffuse sources i.e. domestic, commercial, and industrial uses. In addition, the development of more sensitive and new analytical capabilities that allows scientist to identify contaminants which are typically present in ultra-low concentrations (parts per billion to parts per trillion). The low concentrations combined with a lack of toxicological evidence make hazard characterisation technically challenging and thus the regulatory standards, where available, tend to be less rigorous and are advisory rather than prescriptive. In some cases (e.g. flame retardants) there are difficulties in identifying safer alternatives even when new evidence emerges about the health risk from the currently used materials.

Some examples of emerging contaminants include: perfluorocarbons ((e.g. perfluorooctane sulfonate (PFOS)), perfluorooctanoic acid (PFOA)), pesticides residues/metabolites (e.g. metaldehyde), pharmaceuticals and personal care products (e.g. steroids and antibiotics, fragrances, cosmetics), nanomaterials (e.g. buckeyballs or fullerenes; carbon nanotubes). These chemicals or their parent products are being manufactured to improve the quality and safety or to increase the efficiency in industrial processes. By nature, they are intended to last long or be resistant to microbial degradation in the environment. For example, PFCs contains only carbon and fluorine bonded together in strong carbon­-fluorine bonds which made them chemically inert and thermally stable. When these chemicals (e.g. PFOS, antibiotics, steroids) are released to the public sewer system, conventional water treatment processes can do little to render them harmless and go unabated to enter the wider environment and biotic food chain as a pollutant.

Our knowledge to relate the presence of emerging chemicals in the environment with public health significance is still at its infancy. Bioassays with animal models indicate the potential for toxicity to humans if exposed to a very high doses but such high dose exposure is unrealistic when compared to typical environmental concentrations. Uncertainty, however, remains over the potential health impacts from a low level chronic exposure due to their persistence and bioaccumulative nature. Studies with ecological receptors e.g. with fish in streams contaminated by steroids have shown evidence of hormone disruption. There is also concern that elevated exposure to antibiotics in water could lead to disease-resistant strains of bacteria, reducing the effectiveness of the current class of drugs. For the human population, the limited data available suggests that there is a need for more “prospective cohort” type study to characterise the association between environmental exposure to these substances, appropriate biomarkers and measurable health outcomes.


Emerging chemicals should be a source of concern to ecological and public health in all parts of the world. In this era of financial constraint and interdependent/connected economies, there is a need for shared research programme and data-sharing to enhance analytical capacity to determine their environmental occurrence, fate and transport.  There is also a need for improved risk assessment tools to characterise the exposure and extrapolation of ecological risk to public health if relevant and appropriate. Regulatory policy should encompass emerging chemicals in their monitoring regime, and encourage safer alternatives, increased awareness and risk reduction programme. Societies like the SEGH can facilitate research consortia or a task force drawing from its international expertise to influence the relevant public policy and apply for research funding. Further information on emerging chemicals can be found in websites of various regulatory and public health organisations such as European Chemicals Agency, US EPA, ATSDR.    


Sohel Saikat, Health Protection Agency, UK.

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Genotoxic effects of PM 10 and PM 2.5 bound metals: metal bioaccessibility, free radical generation, and role of iron 2018-10-09


    The present study was undertaken to examine the possible genotoxicity of ambient particulate matter (PM10 and PM2.5) in Pune city. In both size fractions of PM, Fe was found to be the dominant metal by concentration, contributing 22% and 30% to the total mass of metals in PM10 and PM2.5, respectively. The speciation of soluble Fe in PM10 and PM2.5 was investigated. The average fraction of Fe3+ and Fe2+ concentrations in PM2.5 was 80.6% and 19.3%, respectively, while in PM2.5 this fraction was 71.1% and 29.9%, respectively. The dominance of Fe(III) state in both PM fractions facilitates the generation of hydroxyl radicals (·OH), which can damage deoxyribose nucleic acid (DNA), as was evident from the gel electrophoresis study. The DNA damage by ·OH was supported through the in silico density functional theory (DFT) method. DFT results showed that C8 site of guanine (G)/adenine (A) and C6 site of thymine (T)/cytosine (C) would be energetically more favorable for the attack of hydroxyl radicals, when compared with the C4 and C5 sites. The non-standard Watson–Crick base pairing models of oxidative products of G, A, T and C yield lower-energy conformations than canonical dA:dT and dG:dC base pairing. This study may pave the way to understand the structural consequences of base-mediated oxidative lesions in DNA and its role in human diseases.

  • A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment 2018-10-08


    Airborne particulate matter (PM) that is a heterogeneous mixture of particles with a variety of chemical components and physical features acts as a potential risk to human health. The ability to pose health risk depends upon the size, concentration and chemical composition of the suspended particles. Potential toxic elements (PTEs) associated with PM have multiple sources of origin, and each source has the ability to generate multiple particulate PTEs. In urban areas, automobile, industrial emissions, construction and demolition activities are the major anthropogenic sources of pollution. Fine particles associated with PTEs have the ability to penetrate deep into respiratory system resulting in an increasing range of adverse health effects, at ever-lower concentrations. In-depth investigation of PTEs content and mode of occurrence in PM is important from both environmental and pathological point of view. Considering this air pollution risk, several studies had addressed the issues related to these pollutants in road and street dust, indicating high pollution level than the air quality guidelines. Observed from the literature, particulate PTEs pollution can lead to respiratory symptoms, cardiovascular problems, lungs cancer, reduced lungs function, asthma and severe case mortality. Due to the important role of PM and associated PTEs, detailed knowledge of their impacts on human health is of key importance.

  • Interactions between polycyclic aromatic hydrocarbons and epoxide hydrolase 1 play roles in asthma 2018-10-06


    Asthma, as one of the most common chronic diseases in children and adults, is a consequence of complex gene–environment interactions. Polycyclic aromatic hydrocarbons (PAHs), as a group of widespread environmental organic pollutants, are involved in the development, triggering and pathologic changes of asthma. Various previous studies reported the critical roles of PAHs in immune changes, oxidative stress and environment–gene interactions of asthma. EPHX1 (the gene of epoxide hydrolase 1, an enzyme mediating human PAH metabolism) had a possible association with asthma by influencing PAH metabolism. This review summarized that (1) the roles of PAHs in asthma—work as risk factors; (2) the possible mechanisms involved in PAH-related asthma—through immunologic and oxidative stress changes; (3) the interactions between PAHs and EPHX1 involved in asthma—enzymatic activity of epoxide hydrolase 1, which affected by EPHX1 genotypes/SNPs/diplotypes, could influence human PAH metabolism and people’s vulnerability to PAH exposure. This review provided a better understanding of the above interactions and underlying mechanisms for asthma which help to raise public’s concern on PAH control and develop strategies for individual asthma primary prevention.