SEGH Articles

Environmental Public Health Tracking Proof of Concept Study: hazard tracking in private drinking water supplies

01 October 2011
The Health Protection Agency undertook a proof of concept study to appraise the chemical quality of private drinking water supplies in East Cornwall and map their metal and mineral content relative to geological formation.

 

The HPA's Centre for Radiation, Chemicals and Environmental hazards (CRCE) has embarked on one of the first studies of its kind in the UK - to map the levels of metals and minerals present in geological formations and their potential effect on the quality of private drinking water supplies.

The team, working in collaboration with colleagues from Cornwall Council and the British Geological Survey (BGS), identified, collected and analysed samples from approximately 250 homes with private drinking water supplies in East Cornwall.

The study aimed to improve the knowledge of the quality of private drinking water supplies in the area and increase the understanding of where high levels of naturally occurring metal and minerals are present in the ground. The data collected will be used to map levels and their potential distribution.

Prior to the ground work, BGS identified key geological formations in the sampling area to identify areas with the potential for high yields of metals and minerals in underground water supplies.  The study will help identify where levels of metals and minerals are highest in specific geological formations, this will inform where future water tests would be most appropriate and where resources could be targeted most effectively.  If any private water supplies are found to have levels above the statutory limits, special treatment at the source will be advised to reduce the levels and make the water safe to drink.  If successful, the study could be rolled out to help other local councils meet their duty under the Private Water Supply Regulations across the country.

The study consists of several stages through design, scoping and delivery and involved four weeks of intensive logistical planning and contact with residents to arrange appointments and to gain access to their private water supply for sampling.  Sampling int he Spring involved a 17 day programme with BGS visiting over 250 homes and taking around 300 water samples from borehole supplies across East Cornwall. Samples were analysed for around 60 specific metals and minerals, the outcomes will be reviewed and results fed back.

When the results of the analyses are available (September 2011) they will be used to inform environmental and public health assessments and form the basis for modelling population risk.

Becky Close: Environmental Public Health Scientist, Centre for Radiation, Chemical and Environmental Hazards,

Health Protection Agency.  Rebecca.Close@hpa.org.uk

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Soil contamination and human health: Part 1—preface 2020-01-27
  • The influence of application of biochar and metal-tolerant bacteria in polluted soil on morpho-physiological and anatomical parameters of spring barley 2020-01-27

    Abstract

    The paper presents the results of the model experiment on spring barley (Hordeum vulgare L.) grown in polluted soil. The influence of separate and combined application of wood biochar and heavy metal-tolerant bacteria on morpho-physiological, anatomical and ultrastructural parameters of H. vulgare L. has been studied. The joint application of biochar and bacteria increased the shoot length by 2.1-fold, root length by 1.7-fold, leaf length by 2.3-fold and dry weight by threefold compared to polluted variant, bringing the plant parameters to the control level. The maximal quantum yield of photosystem II decreased by 8.3% in H. vulgare L. grown in contaminated soil, whereas this decrease was less in biochar (7%), bacteria (6%) and in combined application of bacteria and biochar (5%). As for the transpiration rate, the H. vulgare L. grown in polluted soil has shown a decrease in transpiration rate by 26%. At the same time, the simultaneous application of biochar and bacteria has led to a significant improvement in the transpiration rate (14%). The H. vulgare L. also showed anatomical (integrity of epidermal, vascular bundles, parenchymal and chlorenchymal cells) and ultrastructural (chloroplasts, thylakoid system, plastoglobules, starch grains, mitochondria, peroxisomes, ribosomes, endoplasmic reticulum, vacuoles) changes, revealed by light-optical and transmission electron microscopy of leaf sections. The effects were most prominent in H. vulgare L., grown in polluted soil but gradually improved with application of biochar, bacteria and their combination. The use of biochar in combination with metal-tolerant bacteria is an efficient tool for remediation of soils, contaminated with heavy metals. The positive changes caused by the treatment can be consistently traced at all levels of plant organization.

  • Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt 2020-01-23

    Abstract

    The steady increase in the world’s population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.

    Graphic abstract