SEGH Articles

Environmental Geochemistry and Consultancy in Amazonia: from my archive

24 July 2014
The problem: mercury losses from informal gold mining and health risks to the miners (garimpeiros), gold traders and local riverine communities, by Past President Iain Thornton.


A surprise telephone call from Switzerland in 1994, instigated by the then UK Department of the Environment, and an invitation to a meeting in Brussels with the leader of a Brazilian NGO-GEDEBAM  was the start of some five years somewhat demanding and indeed exciting research along the River Tapajos, a major tributary of the Amazon. The problem: mercury losses from informal gold mining and health risks to the miners (garimpeiros), gold traders and local riverine communities. With funding from a private philanthropist and DG1 of the European Commission, my initial role together with a social anthropologist from Cambridge (and the author of the Rough Guide to Brazil) was to lead a small team of British and Brazilian workers to sample blood and urine from workers in selected mining camps and trading posts and from communities potentially exposed to mercury from the consumption of contaminated fish, fish being the staple diet in villages along the river.

Overcoming problems of importing clean sampling and storage equipment into Brazil and with the hire of a small aircraft and pilot, a base was set up at the local headquarters of the Brazilian Army at Itaituba, the major gold trading site in Amazonia. Travel from Santarem on the Amazon to Itaituba on the Tapajos took 17 hours by river boat, mainly overnight, sleeping on deck in a hammock! We were met by the President of the garimpeiros union and a band of some 10 rather agitated miners and had to convince them that we were there to for the good of their health and not to threaten their mining activities. All was well and we established a good relationship that was of great help in the future. Landing on a grass strip at our first mining camp after a 1 hour flight over dense forest was an incredible experience. In due course, blood and urine samples were collected by an army physician seconded to our team at two gold mining camps and a fish eating village on the River Tapajos. Frozen samples were transported back to the UK for mercury analysis at the Department of Clinical Biochemistry, Southampton General Hospital. At one camp, mercury in urine in 22 of the 106 individuals sampled exceeded an acceptable level in industrial workers, some greatly so. Mercury in blood in some of the fish eaters exceeded a threshold associated with neurological change (Cleary, Thornton et al.1994). Mercury levels in selected fish ranged up to 2.6mg/kg fresh weight and 21 0f a total of 51 fish samples exceeded  the EC Environmental Quality Standard of 0.30mg/kg for “a basket of fish”. Some samples of floordusts from gold trading posts exceeded 1%Hg.

A feasibility study was then undertaken at the request of the European Commission, leading to a multidisciplinary project funded for a 4-year period by the EU, with financial control and management by Imperial College Consultants, and scientific leadership by the author. A brief account of this work has been previously reported (Thornton, 2012).  The programme  involved a) setting up and equipping two speciality laboratories for Hg analysis on University campuses in the Amazon region under the direction of Dr.Olaf Malm of the Federal University of Rio de Janeiro;  b)  recruiting a medical team from the university of Odense in Denmark, to undertake detailed blood and urine sampling and make health checks on exposed populations including specific tests to identify possible neurological disorders; c)  a German team to investigate  methods of improving   the mining process to cut down losses of Hg into the river system; d) a Brazilian team to undertake dietary studies on fish eating riverine communities. The outcome was fourfold: a simple modification to the mining process was developed, tested and demonstrated to the local miners, reducing mercury losses into the river system by as much as 70%: gold traders, who burn off Hg from the amalgam to purify the gold, were persuaded to install safety equipment to reduce losses of Hg vapour into the atmosphere and thus reduce human exposure: villagers, living along the river and depending on fish as their main dietary source, were found to greatly exceed WHO recommended guidelines for Hg intake; this was reflected in raised tissue levels. Medical tests did not show any major health effects (i.e. similar to those found in exposed populations in Japan), though measureable minor neurological disorders were found. Advice was given on the consumption of different fish species, as Hg accumulates up the food chain and pisciverous fish contain the highest Hg levels. At the end of the programme, the two laboratories were donated by the EU to the two host universities, who were encouraged to set up consultancy arrangements to finance their future operation.   Finally, a regional symposium was organised by Imperial College Consultants in Santarem to disseminate the results of the work to institutions in neighbouring Amazonian countries with similar gold mining activities.

Subsequent postgraduate studies, funded by Rio Tinto, examined factors influencing mercury accumulation in different fish species and confirmed the role of biomagnification and largest concentrations in pisciverous species (Howard, 2002). Further research led to the proposal that soil erosion is a major factor leading to mercury release to rivers, supported by evidence from cores of bottom sediments in rivers and floodplain lakes suggesting that there has been a considerable input of mercury and particulate matter from soils over the last 50 years (Roulet et al, 2000). It was further suggested that infrastructure arising from mining activity had accelerated agricultural development in the Tapajos catchment with an impact on soil erosion and mercury release (Howard et al, 2002).

The current situation is difficult to assess. Several multinational groups and charities have focussed on the area with the broad aims of improving the wellbeing both of the mining and trading community and the health of the local villagers. In parallel, collaboration between the garimpeiros and international mining groups has proceeded with extensive exploration in the Tapajos region. Current activity focuses on significant surface mineralisation in the “Tapajos Gold Province” which has recently been termed “one of the largest under-explored gold regions in the world”.

A balsa on the River Tapajos—a raft with a large sluice for separating mercury/gold amalgam from river sediment.

Heating mercury/gold amalgam in an open crucible with a butane torch, releasing mercury into the atmosphere.

 

by Past President Ian Thornton.

 

References.

Cleary,D., Thornton, I., Brown,N., Kazantzis,G., Delves,T., Worthington,S., 1994. Mercury in Brazil. Nature 369, 613-614.

Howard,B.M. 2001. Mercury Accumulation in Fishes of the Rio Tapajos, Brazilian Amazonia. Unpubl. PhD Thesis, Univ. London.

Howard,B.M., Malm,O., Payne,I., Thornton,I., 2002.Mercury in Amazonia: Assessing the Role of Artisanal Gold. Mining Environmental Management November 2002, 20-21.

Roulet,M., Lucotte,M., Canuel,R., Farella,N., Courcelles,M., Guimaraes,J.R.D., Mergler,D.,Amorim,M., 2000. Increase in Mercury Contamination Recorded in Lacustrine Sediments Following Deforestation in the Central Amazon. Chemical Geology 165, 243-266.

Thornton,I., 2012. Environmental Geochemistry: 40Years Research at Imperial College, London,UK. Applied Geochemistry 27, 939-953.

 

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Assessment of the toxicity of silicon nanooxide in relation to various components of the agroecosystem under the conditions of the model experiment 2018-08-18

    Abstract

    Investigation of SiO2 nanoparticles (NPs) effect on Eisenia fetida showed no toxic effect of the metal at a concentration of 250, 500 and 1000 mg per kg of soil, but conversely, a biomass increase from 23.5 to 29.5% (at the protein level decrease from 60 to 80%). The reaction of the earthworm organism fermentative system was expressed in the decrease in the level of superoxide dismutase (SOD) on the 14th day and in the increase in its activity to 27% on the 28th day. The catalase level (CAT) showed low activity at average element concentrations and increase by 39.4% at a dose of 1000 mg/kg. Depression of malonic dialdehyde (MDA) was established at average concentrations of 11.2% and level increase up to 9.1% at a dose of 1000 mg/kg with the prolongation of the effect up to 87.5% after 28-day exposure. The change in the microbiocenosis of the earthworm intestine was manifested by a decrease in the number of ammonifiers (by 42.01–78.9%), as well as in the number of amylolytic microorganisms (by 31.7–65.8%). When the dose of SiO2 NPs increased from 100 to 1000 mg/kg, the number of Azotobacter increased (by 8.2–22.2%), while the number of cellulose-destroying microorganisms decreased to 71.4% at a maximum dose of 1000 mg/kg. The effect of SiO2 NPs on Triticum aestivum L. was noted in the form of a slight suppression of seed germination (no more than 25%), an increase in the length of roots and aerial organs which generally resulted in an increase in plant biomass. Assessing the soil microorganisms’ complex during introduction of metal into the germination medium of Triticum aestivum L., there was noted a decrease in the ammonifiers number (by 4.7–67.6%) with a maximum value at a dose of 1000 mg/kg. The number of microorganisms using mineral nitrogen decreased by 29.5–69.5% with a simultaneous increase in the number at a dose of 50 mg/kg (+ 20%). Depending on NP dose, there was an inhibition of the microscopic fungi development by 18.1–72.7% and an increase in the number of cellulose-destroying microorganisms. For all variants of the experiment, the activity of soil enzymes of the hydrolase and oxidoreductase classes was decreased.

  • Seasonal characteristics of chemical compositions and sources identification of PM 2.5 in Zhuhai, China 2018-08-16

    Abstract

    Fine particulate matter is associated with adverse health effects, but exactly which characteristics of PM2.5 are responsible for this is still widely debated. We evaluated seasonal dynamics of the composition and chemical characteristics of PM2.5 in Zhuhai, China. PM2.5 characteristics at five selected sites within Zhuhai city were analyzed. Sampling began on January 10, 2015, and was conducted for 1 year. The ambient mass concentration, carbon content (organic and elemental carbon, OC and EC), level of inorganic ions, and major chemical composition of PM2.5 were also determined. Average concentrations of PM2.5 were lower than the National Ambient Air Quality Standard (NAAQS) 24-h average of 65 μg/m3. The daily PM2.5 concentration in Zhuhai city exhibited clear seasonal dynamics, with higher daily PM2.5 concentrations in autumn and winter than in spring and summer. Carbon species (OC and EC) and water-soluble ions were the primary components of the PM2.5 fraction of particles. Apart from OC and EC, chemical species in PM2.5 were mainly composed of NH4+ and SO42−. There was a marked difference between the summer and winter periods: the concentrations of OC and EC in winter were roughly 3.4 and 4.0 times than those in summer, while NH4+, SO42−, NO3, and Na+ were 3.2, 4.5, 28.0, and 5.7 times higher in winter than those in summer, respectively. The results of chemical analysis were consistent with three sources dominating PM2.5: coal combustion, biomass burning, and vehicle exhaust; road dust and construction; and from reaction of HCl and HNO3 with NH3 to form NH4Cl and NH4NO3. However, additional work is needed to improve the mass balance and to obtain the source profiles necessary to use these data for source apportionment.

  • Estimates of potential childhood lead exposure from contaminated soil using the USEPA IEUBK model in Melbourne, Australia 2018-08-14

    Abstract

    Soils in inner city areas internationally and in Australia have been contaminated with lead (Pb) primarily from past emissions of Pb in petrol, deteriorating exterior Pb-based paints and from industry. Children can be exposed to Pb in soil dust through ingestion and inhalation leading to elevated blood lead levels (BLLs). Currently, the contribution of soil Pb to the spatial distribution of children’s BLLs is unknown in the Melbourne metropolitan area. In this study, children’s potential BLLs were estimated from surface soil (0–2 cm) samples collected at 250 locations across the Melbourne metropolitan area using the United States Environmental Protection Agency (USEPA) Integrated Exposure Uptake Biokinetic (IEUBK) model. A dataset of 250 surface soil Pb concentrations indicate that soil Pb concentrations are highly variable but are generally elevated in the central and western portions of the Melbourne metropolitan area. The mean, median and geometric soil Pb concentrations were 193, 110 and 108 mg/kg, respectively. Approximately 20 and 4% of the soil samples exceeded the Australian HIL-A residential and HIL-C recreational soil Pb guidelines of 300 and 600 mg/kg, respectively. The IEUBK model predicted a geometric mean BLL of 2.5 ± 2.1 µg/dL (range: 1.3–22.5 µg/dL) in a hypothetical 24-month-old child with BLLs exceeding 5 and 10 µg/dL at 11.6 and 0.8% of the sampling locations, respectively. This study suggests children’s exposure to Pb contaminated surface soil could potentially be associated with low-level BLLs in some locations in the Melbourne metropolitan area.