SEGH Articles

Exposure to Arsenic And Other Toxic Elements Through Eating Earth

01 February 2012
The practice of deliberately eating earth, known as geophagy has been common in many cultures across the world. Unfortunately, very little scientific research is being conducted in this area and its impact on human health.

 

 

The work decribed below has been published and can be accessed from the following link: http://www.ehjournal.net/content/9/1/79

The practice of deliberately eating earth, known as geophagy has been common in many cultures across the world.  It continues to be practiced today in many parts of the world including amongst certain groups within the United Kingdom.  The reason behind this practice remains unknown, although it has been suggested it is consumed for nutritional and medicinal purposes. Since geophagy is more prevalent during pregnancy, it has been suggested that eating earth may remedy deficiencies that results in anaemia in women.  However, others argue that eating earth may cause anaemia.   Unfortunately, very little scientific research is being conducted in this area and little is known about the composition of earth that is consumed in different parts of the world and their impact on human health.   The mineral content of the earth will naturally vary from region to region and the potential of exposure to toxic elements is likely.   This is a cause for concern especially in certain parts of the world where there are environmental problems resulting in the presence of elevated levels of toxic elements such as arsenic in water and the food chain.  Arsenic is a toxic element that is present at high levels in drinking water in Bangladesh and India.  Although many studies have focused on arsenic exposure in India (West Bengal) and Bangladesh through drinking water, very little work has been done to consider other sources of exposure.  Exposure to arsenic through consumption of rice and vegetables has been highlighted (Cascio et al. 2011 and references therein).  It was reported that the Bangladeshi's residing in the United Kingdom are exposed to a higher level of arsenic compared to white Caucasians (Cascio et al. 2011) due to their high intake of rice. 

Shaban Al-Rmalli is a PhD student (PhD supervisors:  Parvez Haris & Richard Jenkins, De Montfort University; Collaborator:  Michael Watts, British Geological Survey) at De Montfort and his research project was to identify the different sources of arsenic exposure in the Bangladeshi community not just from rice and vegetables.   The aim of the project is to identify sources of exposure to toxic elements that may explain the reasons underlying the disproportionately higher prevalence of different disease including diabetes, cardiovascular disease and some types of cancer amongst UK Bangladeshis (Cascio et al.  2010 & references therein).   Information obtained could be used to help modify the diet of the Bangladeshis (both in the UK and in Bangladesh) so that they avoid certain types of foods/non-foods that may contain high levels of toxic elements.  As part of his PhD project, Shaban analysed over 1,000 Bangladeshi food and non-food samples.  Amongst the samples he purchased from ethnic Bangladeshi shops in the United Kingdom was baked clay (imported from Bangladesh) that are called Sikor in Bengali (see Figure).   Discussions with the members of the Bangladeshi community and shop keepers revealed that these clay tablets are purchased mainly by Bangladeshi and African women and especially by pregnant women from these communities.  This revelation was rather alarming and further investigation into this issue revealed that in Bangladesh some women can consume as much as 500g of these clay tablets per day.   The average weight of the sikor tablets shown in the Figure is approximately 15g and most women consume between 3-4 tablets per day.  This is particularly worrying as intake of high levels of toxic elements could not only harm the health of the pregnant women but that of the unborn baby since many toxic elements including lead and arsenic can transfer from the mother to the baby through the placenta.  What was a cause for further worry is that women in Bangladesh are already being exposed to high levels of arsenic and manganese etc through drinking water and consumption of sikor may potentially lead to a further increase in exposure to these elements.   It was therefore vital that such samples are analysed to evaluate their content of arsenic as no previous studies have considered this issue.   

Sikor samples, originating from Bangladesh,  were purchased and analysed for their As, Pb, Cd, Mn, Fe and Zn levels using ICP-MS. Furthermore, detailed As speciation analysis was performed using HPLC-ICP-MS (http://www.ehjournal.net/content/9/1/79).   The levels of As (3.8-13.1 mg kg-1), Cd (0.09-0.4 mg kg-1) and Pb (21-26.7 mg kg-1) present in the sikor samples were of concern and could have detrimental effect on the health of the consumer. Speciation analysis revealed that sikor samples contained mainly the toxic inorganic As. It was calculated that modest consumption of 50 g of sikor is equivalent to ingesting 370 μg of As and 1235 μg of Pb per day, based on median concentration values. Just consuming 50g sikor per day exceeds the permitted maximum tolerable daily intake (PMTDI) of inorganic As by almost 2-fold (http://www.ehjournal.net/content/9/1/79).   The study concluded that sikor consumption can be a source of exposure to As, Cd and Pb in some Bangladeshis and in some other populations where this is consumed such as in India & Africa.   In the future, it is important to evaluate the bioavailability of As and other elements from sikor and their impact on human health.

The authors of the study recommend that those responsible for public health, act to create awareness about the potential dangers of consuming baked clay in populations where this practice is prevalent.  As a result, the United Kingdom Food Standards Agency has advised pregnant women not to eat baked clay (http://www.food.gov.uk/news/newsarchive/2011/june/clay ).  However, public health officials in other parts of the world including Bangladesh, India, Africa and other parts of the world where geophagy is more prevalent need to also act urgently to advise women about the potential dangers of eating clay.

For further details, please contact Dr P.I. Haris, E-Mail: pharis@dmu.ac.uk

References:

Al-Rmalli, S.W.,  Jenkins, R.O., Watts, M.J., and Haris, P.I. Risk of human exposure to arsenic and other toxic elements from geophagy: trace element analysis of baked clay using inductively coupled plasma mass spectrometry.  Environmental Health 2010, 9:79 (23 December 2010).

http://www.ehjournal.net/content/9/1/79

Cascio, C., Raab, A.,  Jenkins, R.O., Feldmann, J. Meharg, A.A. and Haris, P.I. (2011)  The impact of a rice based diet on urinary arsenic.  J. Environ. Monit., 2011, 13, 257-265.

Related reports 

Food Standards Agency issues warning about eating clay.

http://www.food.gov.uk/news/newsarchive/2011/june/clay

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • The society for environmental Geochemistry and health (SEGH): a retrospect 2019-02-22
  • Air quality and PM 10 -associated poly-aromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches 2019-02-19

    Abstract

    Diesel engine railway traffic causes atmosphere pollution due to the exhaust emission which may be harmful to the passengers as well as workers. In this study, the air quality and PM10 concentrations were evaluated around a railway station in Northeast India where trains are operated with diesel engines. The gaseous pollutant (e.g. SO2, NO2, and NH3) was collected and measured by using ultraviolet–visible spectroscopy. The advanced level characterizations of the PM10 samples were carried out by using ion chromatography, Fourier-transform infrared, X-ray diffraction, inductively coupled plasma optical emission spectrometry , X-ray photoelectron spectroscopy, field-emission scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy with energy-dispersive spectroscopy techniques to know their possible environmental contaminants. High-performance liquid chromatography technique was used to determine the concentration of polycyclic aromatic hydrocarbons to estimate the possible atmospheric pollution level caused by the rail traffic in the enclosure. The average PM10 concentration was found to be 262.11 µg m−3 (maximum 24 hour) which indicates poor air quality (AQI category) around the rail traffic. The statistical and air mass trajectory analysis was also done to know their mutual correlation and source apportionment. This study will modify traditional studies where only models are used to simulate the origins.

  • The geochemistry of geophagic material consumed in Onangama Village, Northern Namibia: a potential health hazard for pregnant women in the area 2019-02-18

    Abstract

    Ingestion of geophagic materials might affect human health and induce diseases by different ways. The purpose of this study is to determine the geochemical composition of geophagic material consumed especially by pregnant women in Onangama Village, Northern Namibia and to assess its possible health effects. X-ray fluorescence and inductively coupled plasma mass spectrometry were used in order to determine the major, and trace elements as well as anions concentrations of the consumed material. The geochemical analysis revealed high concentrations of aluminium (Al), calcium (Ca), iron (Fe), magnesium (Mg), manganese (Mn), potassium (K), sodium (Na), and silica (Si); and trace elements including arsenic (As), chromium (Cr), mercury (Hg), nickel (Ni) and vanadium (V) as well as sulphate (SO42−), nitrate (NO3), and nitrite (NO2) anions comparing to the recommended daily allowance for pregnant women. The pH for some of the studied samples is alkaline, which might increase the gastrointestinal tract pH (pH < 2) and cause a decrease in the bioavailability of elements. The calculated health risk index (HRI > 1) revealed that Al and Mn might be a potential risk for human consumption. Based on the results obtained from the geochemical analysis, the consumption of the studied material might present a potential health risk to pregnant women including concomitant detrimental maternal and foetal effects.