SEGH Articles

Exposure to Arsenic And Other Toxic Elements Through Eating Earth

01 February 2012
The practice of deliberately eating earth, known as geophagy has been common in many cultures across the world. Unfortunately, very little scientific research is being conducted in this area and its impact on human health.

 

 

The work decribed below has been published and can be accessed from the following link: http://www.ehjournal.net/content/9/1/79

The practice of deliberately eating earth, known as geophagy has been common in many cultures across the world.  It continues to be practiced today in many parts of the world including amongst certain groups within the United Kingdom.  The reason behind this practice remains unknown, although it has been suggested it is consumed for nutritional and medicinal purposes. Since geophagy is more prevalent during pregnancy, it has been suggested that eating earth may remedy deficiencies that results in anaemia in women.  However, others argue that eating earth may cause anaemia.   Unfortunately, very little scientific research is being conducted in this area and little is known about the composition of earth that is consumed in different parts of the world and their impact on human health.   The mineral content of the earth will naturally vary from region to region and the potential of exposure to toxic elements is likely.   This is a cause for concern especially in certain parts of the world where there are environmental problems resulting in the presence of elevated levels of toxic elements such as arsenic in water and the food chain.  Arsenic is a toxic element that is present at high levels in drinking water in Bangladesh and India.  Although many studies have focused on arsenic exposure in India (West Bengal) and Bangladesh through drinking water, very little work has been done to consider other sources of exposure.  Exposure to arsenic through consumption of rice and vegetables has been highlighted (Cascio et al. 2011 and references therein).  It was reported that the Bangladeshi's residing in the United Kingdom are exposed to a higher level of arsenic compared to white Caucasians (Cascio et al. 2011) due to their high intake of rice. 

Shaban Al-Rmalli is a PhD student (PhD supervisors:  Parvez Haris & Richard Jenkins, De Montfort University; Collaborator:  Michael Watts, British Geological Survey) at De Montfort and his research project was to identify the different sources of arsenic exposure in the Bangladeshi community not just from rice and vegetables.   The aim of the project is to identify sources of exposure to toxic elements that may explain the reasons underlying the disproportionately higher prevalence of different disease including diabetes, cardiovascular disease and some types of cancer amongst UK Bangladeshis (Cascio et al.  2010 & references therein).   Information obtained could be used to help modify the diet of the Bangladeshis (both in the UK and in Bangladesh) so that they avoid certain types of foods/non-foods that may contain high levels of toxic elements.  As part of his PhD project, Shaban analysed over 1,000 Bangladeshi food and non-food samples.  Amongst the samples he purchased from ethnic Bangladeshi shops in the United Kingdom was baked clay (imported from Bangladesh) that are called Sikor in Bengali (see Figure).   Discussions with the members of the Bangladeshi community and shop keepers revealed that these clay tablets are purchased mainly by Bangladeshi and African women and especially by pregnant women from these communities.  This revelation was rather alarming and further investigation into this issue revealed that in Bangladesh some women can consume as much as 500g of these clay tablets per day.   The average weight of the sikor tablets shown in the Figure is approximately 15g and most women consume between 3-4 tablets per day.  This is particularly worrying as intake of high levels of toxic elements could not only harm the health of the pregnant women but that of the unborn baby since many toxic elements including lead and arsenic can transfer from the mother to the baby through the placenta.  What was a cause for further worry is that women in Bangladesh are already being exposed to high levels of arsenic and manganese etc through drinking water and consumption of sikor may potentially lead to a further increase in exposure to these elements.   It was therefore vital that such samples are analysed to evaluate their content of arsenic as no previous studies have considered this issue.   

Sikor samples, originating from Bangladesh,  were purchased and analysed for their As, Pb, Cd, Mn, Fe and Zn levels using ICP-MS. Furthermore, detailed As speciation analysis was performed using HPLC-ICP-MS (http://www.ehjournal.net/content/9/1/79).   The levels of As (3.8-13.1 mg kg-1), Cd (0.09-0.4 mg kg-1) and Pb (21-26.7 mg kg-1) present in the sikor samples were of concern and could have detrimental effect on the health of the consumer. Speciation analysis revealed that sikor samples contained mainly the toxic inorganic As. It was calculated that modest consumption of 50 g of sikor is equivalent to ingesting 370 μg of As and 1235 μg of Pb per day, based on median concentration values. Just consuming 50g sikor per day exceeds the permitted maximum tolerable daily intake (PMTDI) of inorganic As by almost 2-fold (http://www.ehjournal.net/content/9/1/79).   The study concluded that sikor consumption can be a source of exposure to As, Cd and Pb in some Bangladeshis and in some other populations where this is consumed such as in India & Africa.   In the future, it is important to evaluate the bioavailability of As and other elements from sikor and their impact on human health.

The authors of the study recommend that those responsible for public health, act to create awareness about the potential dangers of consuming baked clay in populations where this practice is prevalent.  As a result, the United Kingdom Food Standards Agency has advised pregnant women not to eat baked clay (http://www.food.gov.uk/news/newsarchive/2011/june/clay ).  However, public health officials in other parts of the world including Bangladesh, India, Africa and other parts of the world where geophagy is more prevalent need to also act urgently to advise women about the potential dangers of eating clay.

For further details, please contact Dr P.I. Haris, E-Mail: pharis@dmu.ac.uk

References:

Al-Rmalli, S.W.,  Jenkins, R.O., Watts, M.J., and Haris, P.I. Risk of human exposure to arsenic and other toxic elements from geophagy: trace element analysis of baked clay using inductively coupled plasma mass spectrometry.  Environmental Health 2010, 9:79 (23 December 2010).

http://www.ehjournal.net/content/9/1/79

Cascio, C., Raab, A.,  Jenkins, R.O., Feldmann, J. Meharg, A.A. and Haris, P.I. (2011)  The impact of a rice based diet on urinary arsenic.  J. Environ. Monit., 2011, 13, 257-265.

Related reports 

Food Standards Agency issues warning about eating clay.

http://www.food.gov.uk/news/newsarchive/2011/june/clay

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Ecological impact of the antibiotic ciprofloxacin on microbial community of aerobic activated sludge 2019-08-16

    Abstract

    This study investigated the effects and fate of the antibiotic ciprofloxacin (CIP) at environmentally relevant levels (50–500 µg/L) in activated sludge (AS) microbial communities under aerobic conditions. Exposure to 500 µg/L of CIP decreased species diversity by about 20% and significantly altered the phylogenetic structure of AS communities compared to those of control communities (no CIP exposure), while there were no significant changes upon exposure to 50 µg/L of CIP. Analysis of community composition revealed that exposure to 500 µg/L of CIP significantly reduced the relative abundance of Rhodobacteraceae and Nakamurellaceae by more than tenfold. These species frequently occur in AS communities across many full-scale wastewater treatment plants and are involved in key ecosystem functions (i.e., organic matter and nitrogen removal). Our analyses showed that 50–500 µg/L CIP was poorly removed in AS (about 20% removal), implying that the majority of CIP from AS processes may be released with either their effluents or waste sludge. We therefore strongly recommend further research on CIP residuals and/or post-treatment processes (e.g., anaerobic digestion) for waste streams that may cause ecological risks in receiving water bodies.

  • Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: a high density sampling survey in the Parauapebas basin, Brazilian Amazon 2019-08-10

    Abstract

    A high-density regional-scale soil geochemical survey comprising 727 samples (one sample per each 5 × 5 km grid) was carried out in the Parauapebas sub-basin of the Brazilian Amazonia, under the Itacaiúnas Basin Geochemical Mapping and Background Project. Samples were taken from two depths at each site: surface soil, 0–20 cm and deep soil, 30–50 cm. The ground and sieved (< 75 µm) fraction was digested using aqua regia and analyzed for 51 elements by inductively coupled plasma mass spectrometry (ICPMS). All data were used here, but the principal focus was on the potential toxic elements (PTEs) and Fe and Mn to evaluate the spatial distribution patterns and to establish their geochemical background concentrations in soils. Geochemical maps as well as principal component analysis (PCA) show that the distribution patterns of the elements are very similar between surface and deep soils. The PCA, applied on clr-transformed data, identified four major associations: Fe–Ti–V–Sc–Cu–Cr–Ni (Gp-1); Zr–Hf–U–Nb–Th–Al–P–Mo–Ga (Gp-2); K–Na–Ca–Mg–Ba–Rb–Sr (Gp-3); and La–Ce–Co–Mn–Y–Zn–Cd (Gp-4). Moreover, the distribution patterns of elements varied significantly among the three major geological domains. The whole data indicate a strong imprint of local geological setting in the geochemical associations and point to a dominant geogenic origin for the analyzed elements. Copper and Fe in Gp-1 were enriched in the Carajás basin and are associated with metavolcanic rocks and banded-iron formations, respectively. However, the spatial distribution of Cu is also highly influenced by two hydrothermal mineralized copper belts. Ni–Cr in Gp-1 are highly correlated and spatially associated with mafic and ultramafic units. The Gp-2 is partially composed of high field strength elements (Zr, Hf, Nb, U, Th) that could be linked to occurrences of A-type Neoarchean granites. The Gp-3 elements are mobile elements which are commonly found in feldspars and other rock-forming minerals being liberated by chemical weathering. The background threshold values (BTV) were estimated separately for surface and deep soils using different methods. The ‘75th percentile’, which commonly used for the estimation of the quality reference values (QRVs) following the Brazilian regulation, gave more restrictive or conservative (low) BTVs, while the ‘MMAD’ was more realistic to define high BTVs that can better represent the so-called mineralized/normal background. Compared with CONAMA Resolution (No. 420/2009), the conservative BTVs of most of the toxic elements were below the prevention limits (PV), except Cu, but when the high BTVs are considered, Cu, Co, Cr and Ni exceeded the PV limits. The degree of contamination (Cdeg), based on the conservative BTVs, indicates low contamination, except in the Carajás basin, which shows many anomalies and had high contamination mainly from Cu, Cr and Ni, but this is similar between surface and deep soils indicating that the observed high anomalies are strictly related to geogenic control. This is supported when the Cdeg is calculated using the high BTVs, which indicates low contamination. This suggests that the use of only conservative BTVs for the entire region might overestimate the significance of anthropogenic contamination; thus, we suggest the use of high BTVs for effective assessment of soil contamination in this region. The methodology and results of this study may help developing strategies for geochemical mapping in other Carajás soils or in other Amazonian soils with similar characteristics.

  • Uptake of Cd, Pb, and Ni by Origanum syriacum produced in Lebanon 2019-08-06

    Abstract

    Trace metals are found naturally in soil. However, the increase in industrial and agricultural polluting activities has increased trace metal contamination and raised high concerns in the public health sector. The study was conducted on Origanum syriacum, one of the most consumed herbs in the Middle East, and was divided into three parts. (1) Pot experiment: to study the effect of Cd, Pb, or Ni levels in soil on their uptake by O. syriacum. (2) Field samples: collected from major agricultural regions in Lebanon to analyze Cd, Pb, and Ni concentrations in soil and leaves. (3) Sale outlets samples: to measure the levels of Cd, Pb, and Ni in O. syriacum tissues in the market. Results showed that there was a positive correlation between levels of Cd, Pb, and Ni in soil and those in O. syriacum tissues. None of the field samples contained Pb or Ni that exceeded the maximum allowable limits (MAL). Three samples collected from heavily poultry-manured soil contained Cd higher than the MAL. Samples collected from sale outlets did not exceed the MAL for Ni but two exceeded the MAL for Cd and one for Pb. Trace metal contamination is not a major concern in O. syriacum produced in Lebanon. Only one mixture sample from a sale outlet was higher in Pb than the MAL and three samples from heavily manured fields exceeded the MAL for Cd.