SEGH Articles

Exposure to Arsenic And Other Toxic Elements Through Eating Earth

01 February 2012
The practice of deliberately eating earth, known as geophagy has been common in many cultures across the world. Unfortunately, very little scientific research is being conducted in this area and its impact on human health.



The work decribed below has been published and can be accessed from the following link:

The practice of deliberately eating earth, known as geophagy has been common in many cultures across the world.  It continues to be practiced today in many parts of the world including amongst certain groups within the United Kingdom.  The reason behind this practice remains unknown, although it has been suggested it is consumed for nutritional and medicinal purposes. Since geophagy is more prevalent during pregnancy, it has been suggested that eating earth may remedy deficiencies that results in anaemia in women.  However, others argue that eating earth may cause anaemia.   Unfortunately, very little scientific research is being conducted in this area and little is known about the composition of earth that is consumed in different parts of the world and their impact on human health.   The mineral content of the earth will naturally vary from region to region and the potential of exposure to toxic elements is likely.   This is a cause for concern especially in certain parts of the world where there are environmental problems resulting in the presence of elevated levels of toxic elements such as arsenic in water and the food chain.  Arsenic is a toxic element that is present at high levels in drinking water in Bangladesh and India.  Although many studies have focused on arsenic exposure in India (West Bengal) and Bangladesh through drinking water, very little work has been done to consider other sources of exposure.  Exposure to arsenic through consumption of rice and vegetables has been highlighted (Cascio et al. 2011 and references therein).  It was reported that the Bangladeshi's residing in the United Kingdom are exposed to a higher level of arsenic compared to white Caucasians (Cascio et al. 2011) due to their high intake of rice. 

Shaban Al-Rmalli is a PhD student (PhD supervisors:  Parvez Haris & Richard Jenkins, De Montfort University; Collaborator:  Michael Watts, British Geological Survey) at De Montfort and his research project was to identify the different sources of arsenic exposure in the Bangladeshi community not just from rice and vegetables.   The aim of the project is to identify sources of exposure to toxic elements that may explain the reasons underlying the disproportionately higher prevalence of different disease including diabetes, cardiovascular disease and some types of cancer amongst UK Bangladeshis (Cascio et al.  2010 & references therein).   Information obtained could be used to help modify the diet of the Bangladeshis (both in the UK and in Bangladesh) so that they avoid certain types of foods/non-foods that may contain high levels of toxic elements.  As part of his PhD project, Shaban analysed over 1,000 Bangladeshi food and non-food samples.  Amongst the samples he purchased from ethnic Bangladeshi shops in the United Kingdom was baked clay (imported from Bangladesh) that are called Sikor in Bengali (see Figure).   Discussions with the members of the Bangladeshi community and shop keepers revealed that these clay tablets are purchased mainly by Bangladeshi and African women and especially by pregnant women from these communities.  This revelation was rather alarming and further investigation into this issue revealed that in Bangladesh some women can consume as much as 500g of these clay tablets per day.   The average weight of the sikor tablets shown in the Figure is approximately 15g and most women consume between 3-4 tablets per day.  This is particularly worrying as intake of high levels of toxic elements could not only harm the health of the pregnant women but that of the unborn baby since many toxic elements including lead and arsenic can transfer from the mother to the baby through the placenta.  What was a cause for further worry is that women in Bangladesh are already being exposed to high levels of arsenic and manganese etc through drinking water and consumption of sikor may potentially lead to a further increase in exposure to these elements.   It was therefore vital that such samples are analysed to evaluate their content of arsenic as no previous studies have considered this issue.   

Sikor samples, originating from Bangladesh,  were purchased and analysed for their As, Pb, Cd, Mn, Fe and Zn levels using ICP-MS. Furthermore, detailed As speciation analysis was performed using HPLC-ICP-MS (   The levels of As (3.8-13.1 mg kg-1), Cd (0.09-0.4 mg kg-1) and Pb (21-26.7 mg kg-1) present in the sikor samples were of concern and could have detrimental effect on the health of the consumer. Speciation analysis revealed that sikor samples contained mainly the toxic inorganic As. It was calculated that modest consumption of 50 g of sikor is equivalent to ingesting 370 μg of As and 1235 μg of Pb per day, based on median concentration values. Just consuming 50g sikor per day exceeds the permitted maximum tolerable daily intake (PMTDI) of inorganic As by almost 2-fold (   The study concluded that sikor consumption can be a source of exposure to As, Cd and Pb in some Bangladeshis and in some other populations where this is consumed such as in India & Africa.   In the future, it is important to evaluate the bioavailability of As and other elements from sikor and their impact on human health.

The authors of the study recommend that those responsible for public health, act to create awareness about the potential dangers of consuming baked clay in populations where this practice is prevalent.  As a result, the United Kingdom Food Standards Agency has advised pregnant women not to eat baked clay ( ).  However, public health officials in other parts of the world including Bangladesh, India, Africa and other parts of the world where geophagy is more prevalent need to also act urgently to advise women about the potential dangers of eating clay.

For further details, please contact Dr P.I. Haris, E-Mail:


Al-Rmalli, S.W.,  Jenkins, R.O., Watts, M.J., and Haris, P.I. Risk of human exposure to arsenic and other toxic elements from geophagy: trace element analysis of baked clay using inductively coupled plasma mass spectrometry.  Environmental Health 2010, 9:79 (23 December 2010).

Cascio, C., Raab, A.,  Jenkins, R.O., Feldmann, J. Meharg, A.A. and Haris, P.I. (2011)  The impact of a rice based diet on urinary arsenic.  J. Environ. Monit., 2011, 13, 257-265.

Related reports 

Food Standards Agency issues warning about eating clay.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil 2017-04-19


    A 30-day incubation experiment was conducted using a heavy metal-contaminated mined soil amended with date palm feedstock (FS) and its derivative biochars (BCs) at three pyrolysis temperatures of 300 (BC-300), 500 (BC-500), and 700 °C (BC-700) with different application rates (0.0, 5, 15, and 30 g kg−1) to investigate their short-term effects on soil respiration (CO2–C efflux), microbial biomass carbon (MBC), soil organic carbon (SOC), mobile fraction of heavy metals (Cd, Cu, Pb, Zn, Mn, and Fe), pH, and electrical conductivity (EC). The results showed that FS and BC-300 with increasing addition rate significantly reduced soil pH, whereas SOC, CO2–C efflux, and soil MBC were increased compared to the control. On the contrary, BC-500 and BC-700 increased soil pH at early stage of incubation and have small or no effects on SOC, CO2–C efflux, and MBC. Based on the results, the date palm biochars exhibited much lower cumulative CO2–C efflux than feedstock, even with low-temperature biochar, indicating that BCs have C sequestration potential. Applying BC-700 at 15 and 30 g kg−1 significantly reduced cumulative CO2–C efflux by 21.8 and 45.4% compared to the control, respectively. The incorporation of FS into contaminated soil significantly increased the mobile content of Cd and Mn, but decreased the mobile content of Cu. However, BC-300 significantly reduced the mobile content of Cd, Cu, Pb, and Zn. It could be concluded that low-temperature biochar could be used as a soil amendment for reducing heavy metal mobility in mining contaminated soil in addition to minimize soil CO2–C efflux.

  • Historical record of anthropogenic polycyclic aromatic hydrocarbons in a lake sediment from the southern Tibetan Plateau 2017-04-17


    High-altitude lake sediments can be used as natural archives to reconstruct the history of pollutants. In this work, the temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was determined in a sediment core collected from the southern Tibetan Plateau (TP), which was dated by using the 210Pb dating method and validated with the 137Cs fallout peak. The concentrations of the anthropogenic PAHs (Σ8PAH) in the sediment core ranged from 0.83 to 12 ng/g dw, and the fluxes of the Σ8PAH were in the range of 2.1–27 g/cm2/year. The temporal variations in the concentration and input flux of anthropogenic PAHs were low with little variability before the 1950s, and then gradually increased from the 1950s to the 1980s, and an accelerated increase was observed after the early 1980s. The content of total organic carbon played an insignificant role in affecting the time trends of PAHs in the sediment core. Diagnostic concentration fractions of PAH components indicate PAHs in the lake sediment of the southern TP which are mainly from biomass burning and/or from long-range atmospheric transport.

  • Determination of the potential implementation impact of 2016 ministry of environmental protection generic assessment criteria for potentially contaminated sites in China 2017-04-12


    The Ministry of Environmental Protection of China issued a 3rd draft edition of risk-based Generic Assessment Criteria (the MEP-GAC) in March 2016. Since these will be the first authoritative GAC in China, their implementation is likely to have a significant impact on China’s growing contaminated land management sector. This study aims to determine the potential implementation impact of the MEP-GAC through an in-depth analysis of the management context, land use scenarios, health criteria values adopted and exposure pathways considered. The MEP-GAC have been proposed for two broad categories of land use scenarios for contaminated land risk assessment, and these two categories of land use scenarios need to be further delved, and a MEP-GAC for Chinese cultivated land scenario ought to be developed, to ensure human health protection of Chinese farmers. The MEP-GAC have adopted 10−6 as the acceptable lifetime cancer risk, given the widespread extent and severe level of land contamination in China, consideration should be given to the decision on excess lifetime cancer risk of 10−5. During risk assessment process in practice, it is better to review the 20% TDI against local circumstances to determine their suitability before adopting it. The MEP-GAC are based on a SOM value of 1%, for regions with particularly high SOM, it might be necessary to develop regional GAC, due to SOM’s significant impact on the GAC developed. An authoritative risk assessment model developed based on HJ25.3-2014 would help facilitate the DQRA process in practice. The MEP-GAC could better reflect the likely exposures of China’s citizens due to vapour inhalation by using characteristics of Chinese exposure scenarios, including China-generic building stock, as inputs into the Johnson and Ettinger model as opposed to adoption of the US EPA parameters. The MEP-GAC once implemented will set the trajectory for the development of the investigation, assessment and remediation of land contamination for years.