SEGH Articles

Flux Based Management of a Groundwater Pollution: from Mass Flux Measurements to Regulatory Decisions

01 August 2011
Goedele Verrydt won the Springer / Hemphill Prize for Student Oral Presentation at SEGH 2011 in Ormskirk, UK.

 

Goedele Verreydt, M.Sc. in Environmental Engineering (2004), commenced her PhD in the Department of Biology at the University of Antwerp in January 2008. Her PhD research concerns the determination and calculation of groundwater contaminant mass fluxes in the frame of a groundwater management, which she performs in the research group Land and Water Management at the Flemish Institute for Technological Research (VITO), Mol, Belgium.

The management of contaminated groundwater is very challenging. Most decisions regarding groundwater pollutions are driven by contaminant concentrations. Since concentration estimates may be highly uncertain and do not include the fluctuations caused by spatially and temporally varying hydrologic conditions, these strategies can be improved by additionally considering contaminant mass fluxes (mass of contaminants passing per unit time per unit area) and contaminant mass discharges (sum of all mass flux measures across an entire plume). The contaminant mass that effectively reaches a downgradient receptor, determines the actual risks for the receptor and should therefore be monitored on site. The combined monitoring of contaminant mass fluxes and groundwater fluxes along a control plane is possible with Passive Flux Meters (PFMs), recently developed passive sampling devices that are installed in monitoring wells for a certain period of time.

 

The main objectives of this study are:

  • to delineate a robust interpretation method for the measurement and calculation of groundwater contaminant fluxes, based on mass flux measurement with Passive Flux Meters (PFMs);
  • to define a clear strategy that supports regulatory decisions in a flux and risk based groundwater management.

The PFM consists of a permeable sorbent infused with soluble tracers packed in a nylon mesh tube. The measurements of the captured contaminants and the remaining resident tracer on the sorbent are used to estimate respectively contaminant and groundwater fluxes.

To calibrate and validate the PFMs, lab as well as field experiments are performed. In addition, the measured water fluxes and contaminant mass fluxes are compared to the results obtained by traditional measurement techniques. The proposed management strategy is based on a source-path-receptor approach.

The PFM has proven to be a valuable instrument for the measurement of contaminant mass flux in groundwater. The extrapolation options of the PFM flux data are defined. Mass discharge can be estimated by integrating the PFM mass flux data throughout the control plane, which converts the individual flux values to a time-stamped cumulative flux (or discharge value). Further, a theoretical framework for a flux based management strategy is set by introducing the term CMDmax (maximum accepted contaminant mass discharge) at a predefined plane of compliance, i.e. a control plane orthogonal to the main flow direction and upgradient the receptor. The proposed strategy includes remedial action if the CMDmax is exceeded.

 G. Verreydt1,2, I. Van keer1 and J. Bronders1

1VITO, Land and Water Management, Boeretang 200, 2400 Mol, Belgium

2Artesis University College of Antwerp, Paardenmarkt 92, 2000 Antwerpen

 goedele.verreydt@vito.be

 Figure shows Mrs. Verreydt retrieving a PFM during a field demonstration in Rijmenam, Belgium.

 Annable, L.D., K. Hatfield, J. Cho, H. Klammler, B.L. Parker, J.A. Cherry and P.S.C. Rao. 2005. Field-Scale Evaluation of the Passive Flux Meter for Simultaneous Measurement of Groundwater and Contaminant Fluxes. Environmental Science & Technology 39(18): 7194-7201.     

Verreydt, G., Bronders, J., Van Keer, I., Diels, L. & Vanderauwera, P. (2010) Passive samplers for monitoring VOCs in groundwater and the prospects related to mass flux measurements. Ground Water Monitoring and Remediation 30(2): 114-126.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Fate and partitioning of heavy metals in soils from landfill sites in Cape Town, South Africa: a health risk approach to data interpretation 2019-06-14

    Abstract

    The fate and persistence of trace metals in soils and sludge from landfill sites are crucial in determining the hazard posed by landfill, techniques for their restoration and potential reuse purposes of landfill sites after closure and restoration. A modified European Community Bureau of Reference’s (BCR) sequential extraction procedure was applied for partitioning and evaluating the mobility and persistence of trace metals (As, Cd, Cr, Cu, Ni, Pb, Sb, Se, Zn) in soils from three landfill sites and sludge sample from Cape Town, South Africa. Inductively coupled plasma optical emission spectroscopy was used to analyze BCR extracts. The mobility sequence based on the BCR mobile fraction showed that Cu (74–87%), Pb (65–80%), Zn (59–82%) and Cd (55–66%) constituted the mobile metals in the soils from the three sites. The mobility of Cu, Zn and Ni (> 95%) was particularly high in the sludge sample, which showed significant enrichment compared to the soil samples. Geo-accumulation index (Igeo) and risk assessment code were used to further assess the environmental risk of the metals in the soils. Exposure to the soils and sludge did not pose any non-cancer risks to adult and children as the hazard quotient and hazard index values were all below the safe level of 1. The cancer risks from Cd, Cr and Ni require that remedial action be considered during closure and restoration of the landfill sites.

  • An investigation into the use of < 38 µm fraction as a proxy for < 10 µm road dust particles 2019-06-13

    Abstract

    It is well documented that a large portion of urban particulate matters is derived from road dust. Isolating particles of RD which are small enough to be inhaled, however, is a difficult process. In this study, it is shown for the first time that the < 38 µm fraction of road dust particles can be used as a proxy for road dust particles < 10 µm in bioaccessibility studies. This study probed similarities between the < 10 and < 38µm fractions of urban road dust to show that the larger of the two can be used for analysis for which larger sample masses are required, as is the case with in vitro analysis. Road dust, initially segregated to size < 38 µm using sieves, was again size segregated to < 10 µm using water deposition. Both the original < 38 µm and the separated < 10 µm fractions were then subject to single particle analysis by SEM–EDX and bulk analysis by ICP-OES for its elemental composition. Dissolution tests in artificial lysosomal fluid, representative of lung fluid, were carried out on both samples to determine % bioaccessibility of selected potentially harmful elements and thus probe similarities/differences in in vitro behaviour between the two fractions. The separation technique achieved 94.3% of particles < 10 µm in terms of number of particles (the original sample contained 90.4% as determined by SEM–EDX). Acid-soluble metal concentration results indicated differences between the samples. However, when manipulated to negate the input of Si, SEM–EDX data showed general similarities in metal concentrations. Dissolution testing results indicated similar behaviour between the two samples in a simulated biological fluid.

  • Degradation of petroleum hydrocarbons in unsaturated soil and effects on subsequent biodegradation by potassium permanganate 2019-06-13

    Abstract

    To date, the oxidation of petroleum hydrocarbons using permanganate has been investigated rarely. Only a few studies on the remediation of unsaturated soil using permanganate can be found in the literature. This is, to the best of our knowledge, the first study conducted using permanganate pretreatment to degrade petroleum hydrocarbons in unsaturated soil in combination with subsequent bioaugmentation. The pretreatment of diesel-contaminated unsaturated soil with 0.5-pore-volume (5%) potassium permanganate (PP) by solution pouring and foam spraying (with a surfactant) achieved the total petroleum hydrocarbon (TPH) removal efficiencies of 37% and 72.1%, respectively. The PP foam, when coupled with bioaugmentation foam, further degraded the TPH to a final concentration of 438 mg/kg (92.1% total reduction). The experiment was conducted without soil mixing or disturbance. The relatively high TPH removal efficiency achieved by the PP–bioaugmentation serial foam application may be attributed to an increase in soil pH caused by the PP and effective infiltration of the remediation agent by foaming. The applied PP foam increased the pH of the acidic soil, thus enhancing microbial activity. The first-order biodegradation rate after PP oxidation was calculated to be 0.068 d−1. Furthermore, 94% of the group of relatively persistent hydrocarbons (C18–C22) was removed by PP–bioaugmentation, as verified by chromatogram peaks. Some physicochemical parameters related to contaminant removal efficiency were also evaluated. The results reveal that PP can degrade soil TPH and significantly enhance the biodegradation rate in unsaturated diesel-contaminated soil when combined with bioaugmentation foam.