SEGH Articles

Global dispersion of trace metals in South America

04 November 2014
Pre-Hispanic metallurgical activities released enough metals to be transported throughout the entire South American continent.

Our recent study of a peat bog in remote Tierra del Fuego and published in PLOS ONE revealed that a part of trace metals – namely copper, lead, antimony and tin – originating from pre-Hispanic metallurgical activities can be recorded in Southern South America. It highlights for the first time that although of relatively small scale, pre-Hispanic metallurgical activities released enough metals to be transported throughout the entire South American continent through favourable wind trajectories. We also found that recent coal, gold and oil rushes released substantial amounts of local lead in the Southern American atmosphere. The uniqueness of these finding connects a number of different fields of research (geochemistry, archaeology, geology, atmospheric sciences) and has many important implications for our understanding of ancient metallurgy, and its legacy on trace metal emission, transport and deposition. First, it provides a scientific answer to a series of observations and questions that have puzzled the archaeological community for decades: (i) how large were the metal exploration and processing in pre-Hispanic times (as only point sources or artefacts have been found); (ii) was there a continuum between the metallurgical activities from different civilizations; and (iii) how far were metallurgical by-products transported via the atmosphere, and how they impacted the environment. Second, our finding will lead to a general agreement that past atmospheric circulation had a secondary North to South wind trajectory, which is opposed to the actual Westerly wind system dominating in South America. This mechanism evidenced by our HYSPLIT modelling and the fact that pre-Hispanic metals were transported to Tierra del Fuego, directly connects the geological cycles of trace elements with past atmospheric dust cycles, wind circulation and climate. 

Picture 1. A partial view of the Karukinka peat bog complexe. Photo Courtesy J-Y De Vleeschouwer

Picture 2. F. De Veeschouwer and colleagues open a peat core containing several thousands of years of information about past metal and dust deposition, climate and environment. Photo Courtesy G. Le Roux

Picture 3. Outcrop of the ancient coal mine “Mina Elena” in South Patagonia. Photo Courtesy G. Le Roux

You can download our article in open access in PLOS ONE.

For more information about trace metals in peat, read our review in PAGES.

To know more about our research in South America and in peatlands in general, connect to our project webpage and our facebook page.

 

F. De Vleeschouwer - SEGH Member and former SEGH 2013 Conference Chairman

Webpage: http://www.ecolab.omp.eu/profils/DE-VLEESCHOUWER_Francois

Reference:

De Vleeschouwer F, Vanneste H, Mauquoy D, Piotrowska N, Torrejon F, et al. (2014) Emissions from Pre-Hispanic Metallurgy in the South American Atmosphere. PLoS ONE 9(10): e111315. doi:10.1371/journal.pone.0111315

 

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Membrane fouling control by Ca 2+ during coagulation–ultrafiltration process for algal-rich water treatment 2019-04-16

    Abstract

    Seasonal algal bloom, a water supply issue worldwide, can be efficiently solved by membrane technology. However, membranes typically suffer from serious fouling, which hinders the wide application of this technology. In this study, the feasibility of adding Ca2+ to control membrane fouling in coagulation–membrane treatment of algal-rich water was investigated. According to the results obtained, the normalized membrane flux decreased by a lower extent upon increasing the concentration of Ca2+ from 0 to 10 mmol/L. Simultaneously, the floc particle size increased significantly with the concentration of Ca2+, which leads to a lower hydraulic resistance. The coagulation performance is also enhanced with the concentration of Ca2+, inducing a slight osmotic pressure-induced resistance. The formation of Ca2+ coagulation flocs resulted in a looser, thin, and permeable cake layer on the membrane surface. This cake layer rejected organic pollutants and could be easily removed by physical and chemical cleaning treatments, as revealed by scanning electron microscopy images. The hydraulic irreversible membrane resistance was significantly reduced upon addition of Ca2+. All these findings suggest that the addition of Ca2+ may provide a simple-operation, cost-effective, and environmentally friendly technology for controlling membrane fouling during coagulation–membrane process for algal-rich water treatment.

  • Evaluation of the raw water quality: physicochemical and toxicological approaches 2019-04-13

    Abstract

    Environmental degradation has increased, mainly as a result of anthropogenic effects arising from population, industrial and agricultural growth. Water pollution is a problem that affects health, safety and welfare of the whole biota which shares the same environment. In Goiânia and metropolitan region, the main water body is the Meia Ponte River that is used for the abstraction of water, disposal of treated wastewater and effluents. In addition, this river receives wastewater from urban and rural areas. The aim in this present study was to evaluate the quality of raw water by some physical, chemical and toxicological tests. The physicochemical results found high levels of turbidity, conductivity, aluminum, phosphorus and metal iron, manganese, copper and lithium when compared to the standards of the Brazilian legislation. The values found of toxicity demonstrated a high degree of cytotoxicity and genotoxicity. Therefore, it was concluded that the Meia Ponte River has been undergoing constant environmental degradation, causing the poor quality of its waters. Thus, measures for the prevention and recovery should be adopted for the maintenance of the Meia Ponte River.

  • Review of the nature of some geophagic materials and their potential health effects on pregnant women: some examples from Africa 2019-04-11

    Abstract

    The voluntary human consumption of soil known as geophagy is a global practice and deep-rooted in many African cultures. The nature of geophagic material varies widely from the types to the composition. Generally, clay and termite mound soils are the main materials consumed by geophagists. Several studies revealed that gestating women across the world consume more soil than other groups for numerous motives. These motivations are related to medicinal, cultural and nutrients supplementation. Although geophagy in pregnancy (GiP) is a universal dynamic habit, the highest prevalence has been reported in African countries such as Kenya, Ghana, Rwanda, Nigeria, Tanzania, and South Africa. Geophagy can be both beneficial and detrimental. Its health effects depend on the amount and composition of the ingested soils, which is subjective to the geology and soil formation processes. In most cases, the negative health effects concomitant with the practice of geophagy eclipse the positive effects. Therefore, knowledge about the nature of geophagic material and the health effects that might arise from their consumption is important.