SEGH Articles

Is it possible to remove polymeric nanoparticles from aqueous paints during the activated sludge treatment?

01 January 2013
It is well established that polymeric nanoparticles are biocompatible at macroscopic scale, but is their behaviour the same at nanoscale?

Susana Piçarra received her undergraduate degree in Chemical Engineering from the Technical University of Lisbon, Portugal. After, she received her PhD in Polymers from the same University in collaboration with the University of Toronto, Canada. She began her independent career at the Polytechnic Institute of Setúbal and at the Institute of Nanoscience and Nanotechnology, both in Portugal. She was a poster presentation winner at the 9th ISEG meeting in Aveiro, Portugal in July.

The market for emulsion polymers (latexes) is large and growing at the expense of other manufacturing processes that emit higher amounts of volatile organic solvents. The paint industry is not an exception and solvent-borne paints have been gradually substituted by aqueous paints. In their life-cycle, much of the aqueous paint used for architectural or decorative purposes will eventually be discharged into wastewater treatment facilities, where its polymeric nanoparticles (mainly acrylic and styrene-acrylic) can work as xenobiotics to the microbial communities present in activated sludge.

Figure 1 – Specific respiration rates determined according to the OCDE’s respiration inhibition test [OCDE Guidelines for the testing of Chemicals, 209, 2010].

It is well established that these materials are biocompatible at macroscopic scale, but is their behaviour the same at nanoscale? What happens to the polymeric nanoparticles during the activated sludge process? Do nanoparticles aggregate and are they discharged together with the sludge or remain in emulsion? How do microorganisms interact with these nanoparticles? Are nanoparticles degradated by them? Are they adsorbed? Are these nanoparticles toxic to the microbial community?

To study the influence of these xenobiotics in the activated sludge process, an emulsion of cross-linked poly(butyl methacrylate) nanoparticles of ca. 50 nm diameter was produced and used as model compound. Activated sludge from a wastewater treatment plant was tested by the OCDE’s respiration inhibition test using several concentrations of PBMA nanoparticles. Particle aggregation was followed by Dynamic Light Scattering and microorganism surfaces were observed by Atomic Force Microscopy (AFM). Using sequential batch reactors (SBRs) and continuous reactors, both inoculated with activated sludge, the consumption of carbon, ammonia, nitrite and nitrate was monitored and compared, in the presence and absence of nanoparticles.

Figure 2 – Amplification of the topological image obtained by AFM of a microorganism surface. Several hills with same diameter of the polymeric nanoparticles can be observed. A – Topographic 3D reconstruction; B- Phase image.

No particles were detected in all treated waters by Dynamic Light Scattering. This can either mean that microorganisms can efficiently remove all polymer nanoparticles or that nanoparticles tend to aggregate and be naturally removed by precipitation. Nevertheless respiration inhibition tests demonstrated that microorganisms consume more oxygen in the presence of nanoparticles, which suggests a stress situation. It was also observed a slight decrease in the efficiency of nitrification in the presence of nanoparticles. AFM images showed that while the morphology of some organisms remained the same both in the presence and absence of nanoparticles, others assumed a rough surface with hilly like shapes of ca. 50 nm when exposed to nanoparticles.

Figure 3 – Variation of the amonia, nitrite and nitrate concentrations during one cycle of both SBR reactors operation: A – control reactor (inoculated with activated sludge, without polymeric nanoparticles); B – test reactor (inoculated with sludge, with 30 ppm of polymeric nanoparticles).

Nanoparticles are thus likely to be either incorporated or adsorbed at the surface of some organisms, increasing the overall respiration rate and decreasing nitrification efficiency. Thus, despite its biocompatibility at macroscopic scale, PBMA is likely to be no longer innocuous at nanoscale.

Susana Piçarra

Technical University of Lisbon, Portugal

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Geophagy among East African Chimpanzees: consumed soils provide protection from plant secondary compounds and bioavailable iron 2019-12-01


    Geophagy, the intentional consumption of earth materials, has been recorded in humans and other animals. It has been hypothesized that geophagy is an adaptive behavior, and that clay minerals commonly found in eaten soil can provide protection from toxins and/or supplement micronutrients. To test these hypotheses, we monitored chimpanzee geophagy using camera traps in four permanent sites at the Budongo Forest Reserve, Uganda, from October 2015–October 2016. We also collected plants, and soil chimpanzees were observed eating. We analyzed 10 plant and 45 soil samples to characterize geophagic behavior and geophagic soil and determine (1) whether micronutrients are available from the soil under physiological conditions and if iron is bioavailable, (2) the concentration of phenolic compounds in plants, and (3) if consumed soils are able to adsorb these phenolics. Chimpanzees ate soil and drank clay-infused water containing 1:1 and 2:1 clay minerals and > 30% sand. Under physiological conditions, the soils released calcium, iron, and magnesium. In vitro Caco-2 experiments found that five times more iron was bioavailable from three of four soil samples found at the base of trees. Plant samples contained approximately 60 μg/mg gallic acid equivalent. Soil from one site contained 10 times more 2:1 clay minerals, which were better at removing phenolics present in their diet. We suggest that geophagy may provide bioavailable iron and protection from phenolics, which have increased in plants over the last 20 years. In summary, geophagy within the Sonso community is multifunctional and may be an important self-medicative behavior.

  • Accumulation of uranium and heavy metals in the soil–plant system in Xiazhuang uranium ore field, Guangdong Province, China 2019-12-01


    Plants that have grown for many years in the special environmental conditions prevailing in mining areas are naturally screened and show strong capacity to adapt to their environment. The present study investigated the enrichment characteristics of U and other heavy metals (As, Cu, Pb, Mn, Mo, Zn, Cd, Co, and Ni) in the soil–plant system in Xiazhuang uranium mine. Four dominant plants (Castanopsis carlesii, Rhus chinensis, Liriodendron chinense, and Sapium discolor) and soil samples were collected from the mined areas, unmined areas, and background areas away from the ore field. U, As, Cu, Pb, Mn, Mo, Zn, Cd, Co, and Ni concentrations were analyzed by ICP-MS. The results demonstrate that (1) The highest concentrations of U (4.1–206.9 mg/kg) and Pb (43.3–126.0 mg/kg) with the geoaccumulation index (Igeo) greater than 1 show that they are the main soil pollutants in the research area. (2) The biological accumulation coefficient (LBAC) values for Cd, Mn, and Cu are greater than zero in S. discolor, L. chinense, and C. carlesii and these three plants indicate that they can be used for remediation of the soil in the ore field. (3) R. chinensis inhibits the accumulation of heavy metals and shows sensitive pigment responses to the accumulation of U in the leaves. L. chinense has the strongest enrichment effect on heavy metals but exhibits weak biochemical responses under U stress. C. carlesii demonstrates strong adaptation to U and can maintain healthy pigment characteristics in case of high U enrichment. (4) S. discolor, L. chinense, C. carlesii and R. chinensis have strong tolerance to U toxicity and different biochemical responses.

  • Distribution, sources and health risk assessment of contaminations in water of urban park: A case study in Northeast China 2019-12-01


    This case study was performed to determine whether the pollutants in water of urban park could bring health risk to human engaging in water-related activities such as swimming and provide evidence demonstrating the critical need for strengthened recreational water resources management of urban park. TN, NH4+-N, TP, Cu, Mn, Zn, Se, Pb, As, Cd and Cr(VI) contents were determined to describe the spatial distribution of contaminations; sources apportionment with the method of correlation analysis, factor analysis and cluster analysis were followed by health risk assessment for swimmers of different age groups. The results reveal that element contents in all sites do not exceed Chinese standard for swimming area and European Commission standard for surface water; all detected elements except Cr(VI) have a tendency to accumulate in the location of lake crossing bridge; Mn and Zn are considered to have the same pollution source including geogenic and anthropogenic sources by multivariable analysis. Carcinogenic risks of different age groups descend in the same order with non-carcinogenic risks. Among all elements, Zn and Mn contribute the lowest non-carcinogenic risk (5.1940E-06) and the highest non-carcinogenic risk (7.9921E-04) through skin contact pathway, respectively. The total average personal risk for swimmers in swimming area is 1.9693E-03, and this site is not suitable for swimming. Overall, it is possible that swimmers are exposed to risk via the dermal route when carrying out water-related activities, it is recommended that necessary precautions and management should be taken in other similar locations around the world.