SEGH Articles

Is the Indian Sundarban and adjacent regions polluted by mercury? A case study and cross sectional view

05 June 2014
The Indian Sundarban and its adjacent regions are experiencing huge population loads in terms of domestic and industrial effluents from upstream highly urbanized Calcutta and surroundings


The Indian Sundarban comprises 40% of the largest delta formed at the confluence of Bay of Bengal by sedimentation of River Ganges and its tributaries. The region is a unique ecosystem type comprised of mangrove wetlands, tidal creeks, lowlands and mudflats. The main occupation of the coastal population is mainly farming and fishing with some others. The Indian Sundarban and its adjacent regions are experiencing huge population loads in terms of domestic and industrial effluents from upstream highly urbanized Calcutta and surroundings. The region is comparatively less explored in terms of ecological and toxicological health hazards. During the last two decades a number of studies have revealed the pollution status of this important region confirming that the region is getting contaminated by a number of pollutants. These include heavy metals, persistent organic pollutants, organotins in biotic and abiotic compartments of the ecosystem.

Mercury is among the toxic heavy metals considered as one of the priority pollutants by international agencies. Mercury has the ability to enter the food chain in the form of organo-mercury (methyl, ethyl) and biomagnify in higher trophic levels. So human corresponding to the higher trophic positions depended on fish meal for protein and Omega-3 fatty acids are at higher risk from mercury. After the incidence of Minamata, Japan raising concerns on the health impacts of mercury on biota and human beings from fish consumption on global scale. There is very little known about the mercury contamination and human exposure in Indian Sundarban which houses about 172 species of fishes and majority of the population depends fish as a major protein source. With this objective a collaborative research work was undertaken with the Centre for Environmental Geochemistry at the British Geological Survey, funded by the Commonwealth Scholarship Commission UK, to perform a case study of mercury pollution in abiotic (sediment) and biotic matrices of Indian Sundarban and adjacent regions.

The samples were collected based on the standard protocols and availability of the biota. The HgT was measured using The Total mercury analyzer (TMA, Milestone). As expected, the sediment was lowest in HgT concentration (0.008 µg g-1 to 0.056 µg g-1). The trend of HgT accumulation in biota was polychaete>fish>bivalve mollusks. Since mercury (in the form of methylmercury) bioaccumulates along the food chain, it was expected that fish would have highest values of HgT among the biota because of its higher trophic position. However, in this study trophic position was not proved to be the key factor to control HgT accumulation. Also the habitat preference (e.g., deposit feeders) could be an important factor for determining the HgT concentration in biota. However, among fishes, carnivorous species tend to accumulate high HgT than that of others. Also the diet (i.e., proportion of feed like polychaetes as food) and exposure time to mercury are important factors controlling HgT concentration. The study revealed that the HgT concentration was lower compared to other studies in the world. Although the overall concentration is low due to a number of operational factors, the highest concentration in biota (polychaete) revealed above the prescribed values, indicating further extensive studies (2014).

A cross-sectional study to ascertain the human exposure of HgT was done by Chatterjee et al., (in press). In this study the authors performed a survey and analysis on the local coastal residents (Sagar Island, Sundarban, India), majority of whom are fisherfolks. The study mainly focused on the human exposure of HgT (via hair biomarker analysis) in terms of fish intake (via dietary survey). In this study, fishes showed low mercury values (0.01-0.11 µg g-1 dry weight) while hair mercury ranged from 0.25- 1.23 µg g-1 dry weight. Hair mercury concentration was highly correlated with the fish consumption frequencies. We didn’t find any influence of age, gender and occupation on the mercury levels. The concentration of HgT in scalp hair revealed baseline information on mercury exposure of fisherfolk population in Indian Sundarban. We need further study considering more participants of different socio-economic groups and diet patterns to comment on the human exposure status of mercury in this region.

Dr. Chatterjee is now a Research Associate in Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, India.

Dr. Mousumi Chatterjee, ( former CSIR research associate in Department of Marine Science, University of Calcutta, India


Chatterjee M, Sklenars L, Chenery S R, Watts M J, Marriott A L, Rakshit D, Sarkar S K. (2014). Assessment of Total Mercury (HgT) in Sediments and Biota of Indian Sundarban Wetland and Adjacent Coastal Regions, Environment and Natural Resources Research, 4, 2, 50-64.

Kwokal, Z., Sarkar, S. K., Fransiškovic-Bilinski, S. W., Bilinski, H., Bhattacharya, A., Bhattacharya, B. D., & Chatterjee, M. (2012). Mercury concentration in sediment cores from Sundarban mangrove wetland, India, Soil and Sediment Contamination An International Journal, 21(4), 525-544.

Antizar-Ladislao,B., Sarkar, S, K., Anderson, P., Peshkur, T., Bhattacharya, B.D., Chatterjee, M., Satpathy, K. K. (2011). Baseline of butyltin contamination in sediments of Sundarban mangrove wetland and adjacent coastal regions, India. Ecotoxicology 20:1975–1983. DOI 10.1007/s10646-011-0739.

Chatterjee, M., Canario, J., Sarkar, S. K., Branco, V., Bhattacharya, A., & Satpathy, K. K. (2009). Mercury enrichments in core sediments in Hugli–Matla–Bidyadhari estuarine complex, north-eastern part of the Bay of Bengal and their ecotoxicological significance. Environmental Geology, 57, 1125-1134.

Chatterjee, M., Silva-Filho, E. V., Sarkar, S. K., Sella, S. M., Bhattacharya, A., & Satpathy, K. K. (2007). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International, 33, 346-356.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Ecological impact of the antibiotic ciprofloxacin on microbial community of aerobic activated sludge 2019-08-16


    This study investigated the effects and fate of the antibiotic ciprofloxacin (CIP) at environmentally relevant levels (50–500 µg/L) in activated sludge (AS) microbial communities under aerobic conditions. Exposure to 500 µg/L of CIP decreased species diversity by about 20% and significantly altered the phylogenetic structure of AS communities compared to those of control communities (no CIP exposure), while there were no significant changes upon exposure to 50 µg/L of CIP. Analysis of community composition revealed that exposure to 500 µg/L of CIP significantly reduced the relative abundance of Rhodobacteraceae and Nakamurellaceae by more than tenfold. These species frequently occur in AS communities across many full-scale wastewater treatment plants and are involved in key ecosystem functions (i.e., organic matter and nitrogen removal). Our analyses showed that 50–500 µg/L CIP was poorly removed in AS (about 20% removal), implying that the majority of CIP from AS processes may be released with either their effluents or waste sludge. We therefore strongly recommend further research on CIP residuals and/or post-treatment processes (e.g., anaerobic digestion) for waste streams that may cause ecological risks in receiving water bodies.

  • Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: a high density sampling survey in the Parauapebas basin, Brazilian Amazon 2019-08-10


    A high-density regional-scale soil geochemical survey comprising 727 samples (one sample per each 5 × 5 km grid) was carried out in the Parauapebas sub-basin of the Brazilian Amazonia, under the Itacaiúnas Basin Geochemical Mapping and Background Project. Samples were taken from two depths at each site: surface soil, 0–20 cm and deep soil, 30–50 cm. The ground and sieved (< 75 µm) fraction was digested using aqua regia and analyzed for 51 elements by inductively coupled plasma mass spectrometry (ICPMS). All data were used here, but the principal focus was on the potential toxic elements (PTEs) and Fe and Mn to evaluate the spatial distribution patterns and to establish their geochemical background concentrations in soils. Geochemical maps as well as principal component analysis (PCA) show that the distribution patterns of the elements are very similar between surface and deep soils. The PCA, applied on clr-transformed data, identified four major associations: Fe–Ti–V–Sc–Cu–Cr–Ni (Gp-1); Zr–Hf–U–Nb–Th–Al–P–Mo–Ga (Gp-2); K–Na–Ca–Mg–Ba–Rb–Sr (Gp-3); and La–Ce–Co–Mn–Y–Zn–Cd (Gp-4). Moreover, the distribution patterns of elements varied significantly among the three major geological domains. The whole data indicate a strong imprint of local geological setting in the geochemical associations and point to a dominant geogenic origin for the analyzed elements. Copper and Fe in Gp-1 were enriched in the Carajás basin and are associated with metavolcanic rocks and banded-iron formations, respectively. However, the spatial distribution of Cu is also highly influenced by two hydrothermal mineralized copper belts. Ni–Cr in Gp-1 are highly correlated and spatially associated with mafic and ultramafic units. The Gp-2 is partially composed of high field strength elements (Zr, Hf, Nb, U, Th) that could be linked to occurrences of A-type Neoarchean granites. The Gp-3 elements are mobile elements which are commonly found in feldspars and other rock-forming minerals being liberated by chemical weathering. The background threshold values (BTV) were estimated separately for surface and deep soils using different methods. The ‘75th percentile’, which commonly used for the estimation of the quality reference values (QRVs) following the Brazilian regulation, gave more restrictive or conservative (low) BTVs, while the ‘MMAD’ was more realistic to define high BTVs that can better represent the so-called mineralized/normal background. Compared with CONAMA Resolution (No. 420/2009), the conservative BTVs of most of the toxic elements were below the prevention limits (PV), except Cu, but when the high BTVs are considered, Cu, Co, Cr and Ni exceeded the PV limits. The degree of contamination (Cdeg), based on the conservative BTVs, indicates low contamination, except in the Carajás basin, which shows many anomalies and had high contamination mainly from Cu, Cr and Ni, but this is similar between surface and deep soils indicating that the observed high anomalies are strictly related to geogenic control. This is supported when the Cdeg is calculated using the high BTVs, which indicates low contamination. This suggests that the use of only conservative BTVs for the entire region might overestimate the significance of anthropogenic contamination; thus, we suggest the use of high BTVs for effective assessment of soil contamination in this region. The methodology and results of this study may help developing strategies for geochemical mapping in other Carajás soils or in other Amazonian soils with similar characteristics.

  • Uptake of Cd, Pb, and Ni by Origanum syriacum produced in Lebanon 2019-08-06


    Trace metals are found naturally in soil. However, the increase in industrial and agricultural polluting activities has increased trace metal contamination and raised high concerns in the public health sector. The study was conducted on Origanum syriacum, one of the most consumed herbs in the Middle East, and was divided into three parts. (1) Pot experiment: to study the effect of Cd, Pb, or Ni levels in soil on their uptake by O. syriacum. (2) Field samples: collected from major agricultural regions in Lebanon to analyze Cd, Pb, and Ni concentrations in soil and leaves. (3) Sale outlets samples: to measure the levels of Cd, Pb, and Ni in O. syriacum tissues in the market. Results showed that there was a positive correlation between levels of Cd, Pb, and Ni in soil and those in O. syriacum tissues. None of the field samples contained Pb or Ni that exceeded the maximum allowable limits (MAL). Three samples collected from heavily poultry-manured soil contained Cd higher than the MAL. Samples collected from sale outlets did not exceed the MAL for Ni but two exceeded the MAL for Cd and one for Pb. Trace metal contamination is not a major concern in O. syriacum produced in Lebanon. Only one mixture sample from a sale outlet was higher in Pb than the MAL and three samples from heavily manured fields exceeded the MAL for Cd.