SEGH Articles

Journey from PhD student to employment: difficult but rewarding

21 April 2011
Dr Mark Button has a few words of comfort for students nearing the job market and searching for their future employment

Mark finished his PhD as the worldwide recession began to bite and found it a daunting prospect to find employment at the time.  His experience may be of use to other students in the current economic climate facing the uncertainties of future employment that come in good economic times, let alone recessionary times.  Mark provides a few comments about his journey from stressed PhD student to the workplace, some of which may be of comfort or strike a poignant note with others embarking on a similar journey.

Dr Mark Button completed his PhD in the summer of 2009 entitled ‘Arsenic contaminated soils: human exposure and environmental toxicology' with Leicester University and the British Geological Survey. He employed lab techniques to investigate means of assessing exposure to arsenic from contaminated soils using: earthworms, bioaccessibility testing and toenails for biomonitoring.  Besides the learning of a range of complex lab techniques, he required multidisciplinary skills relevant to many SEGH members, including: GIS, field, statistical and interpersonal skills. 

Mark now works for the Environmental Sciences Group at the Royal Military College in Kingston Ontario, Canada undertaking research on the biotransformation and toxicity of arsenic in the environment with the aim of better understanding how some organisms such as earthworms can be resistant to the harmful effects of arsenic.

What were your fears, hopes, and the reality at the end of your PhD? 

The first challenge was to find positions that matched with the unique set of skills I acquired during my PhD. I wasn't entirely sure what would be the best direction to head in, postdoc, industry, government, or just taking it easy for a while. I hoped something would become clear and it did. I applied for lots of positions that in honesty I did not really want because I felt like I had to be applying. The breakthrough came when I thought more about what I really did want. I contacted the people directly and found myself with possibilities in Austria and Canada.  What boosted my confidence, was that they had seen my publications and were interested in exploring my lines of research.  I would definitely recommend PhD students publishing their work during their PhD on this experience.

How did a PhD benefit you?

As I went into a postdoc research position, my PhD was vital to the work. It felt very strange going from being a student straight into a position where people automatically assumed I was an expert. Having a PhD seems to change the way people see you in the work place. I found it was very important not to let this go to my head.

What did you enjoy about the PhD?

The whole process provided so many opportunities to test and push myself, it was never boring, always challenging and sometimes inspiring. I enjoyed meeting and talking to all kinds of interesting people. My project was multidisciplinary so I found myself learning about analytical chemistry, toxicology, epidemiology, risk assessment; it was exactly the sort of learning I wanted to experience. Then seeing the final creation complete as publications in the scientific literature was a very nice feeling, like I had made a small but worthwhile contribution to our scientific understanding.

What was difficult about the PhD?

I found the level of autonomy difficult at times, keeping a clear direction in mind of what needed to be done, what I wanted to do, what I wanted to avoid doing and how it would all come together required patience and the realization that I needed help from others. Trying not question whether I had done the right thing when the going got tough was a challenge.  It was easy to find reasons to feel anxious and more difficult to stay positive and focused on the many good aspects when the going got tough.

What have you learnt about yourself since?

I learnt that it helps to avoid preconceptions about what experiences will be like, instead of clinging to an idea of how something will be then struggling when it turns out to be different.  It is much more enjoyable to go into things open minded, do your best and go with the flow. I learnt that the biggest limitations are the ones we impose on ourselves by feeling that we will not achieve something. Finishing a PhD has helped me believe that I can achieve things that at first seem too difficult.

What would you liked to have known coming to the end of your PhD that you know now? 

I would like to have known that it was not so serious. At times the pressure felt intense and it was easy to feel isolated. In reality, I was one of many going through the same process and there were always people willing to help in whatever way they could, be they supervisors, fellow students, friends or family. You just need to stay calm and ask for the help you really need.

Tell us something about your overseas experience?

Coming to Canada has been a fantastic opportunity to continue my personal development. Not just academically but in every sense. Again I find myself challenged and engaged in interesting experiences as I did during my PhD. I love the postdoc lifestyle, no thesis to write just the research I am interested in. I have been fortunate to work with Prof Ken Reimer who is very well established in my area of research. I have visited synchrotrons in Chicago and Saskatoon, and been the team leader for fieldwork in Nova Scotia. I have established new techniques in our lab (Comet Assay) and met many more kind and interesting people.

What are some of your hopes for the future?

I try not to think too much about the future, just to know that as long as I am doing my best right now the future will take care of itself. I am open to whatever oportunities present themselves. Environmental research is a vast field so there will always be lots of interesting work to be done.  I enjoy what I am doing and will stick with it as long as I feel enthusiastic and inspired.


The photograph shoes Mark riding around the 1 km storage ring at the Advanced Photon Source in Chicago.  The experimental hall is so big that tricycles are regularly used by staff to move around the site.

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Status, source identification, and health risks of potentially toxic element concentrations in road dust in a medium-sized city in a developing country 2017-09-19


    This study aims to determine the status of potentially toxic element concentrations of road dust in a medium-sized city (Rawang, Malaysia). This study adopts source identification via enrichment factor, Pearson correlation analysis, and Fourier spectral analysis to identify sources of potentially toxic element concentrations in road dust in Rawang City, Malaysia. Health risk assessment was conducted to determine potential health risks (carcinogenic and non-carcinogenic risks) among adults and children via multiple pathways (i.e., ingestion, dermal contact, and inhalation). Mean of potentially toxic element concentrations were found in the order of Pb > Zn > Cr(IV) > Cu > Ni > Cd > As > Co. Source identification revealed that Cu, Cd, Pb, Zn, Ni, and Cr(IV) are associated with anthropogenic sources in industrial and highly populated areas in northern and southern Rawang, cement factories in southern Rawang, as well as the rapid development and population growth in northwestern Rawang, which have resulted in high traffic congestion. Cobalt, Fe, and As are related to geological background and lithologies in Rawang. Pathway orders for both carcinogenic and non-carcinogenic risks are ingestion, dermal contact, and inhalation, involving adults and children. Non-carcinogenic health risks in adults were attributed to Cr(IV), Pb, and Cd, whereas Cu, Cd, Cr(IV), Pb, and Zn were found to have non-carcinogenic health risks for children. Cd, Cr(IV), Pb, and As may induce carcinogenic risks in adults and children, and the total lifetime cancer risk values exceeded incremental lifetime.

  • Erratum to: Preliminary assessment of surface soil lead concentrations in Melbourne, Australia 2017-09-11
  • In vivo uptake of iodine from a Fucus serratus Linnaeus seaweed bath: does volatile iodine contribute? 2017-09-02


    Seaweed baths containing Fucus serratus Linnaeus are a rich source of iodine which has the potential to increase the urinary iodide concentration (UIC) of the bather. In this study, the range of total iodine concentration in seawater (22–105 µg L−1) and seaweed baths (808–13,734 µg L−1) was measured over 1 year. The seasonal trend shows minimum levels in summer (May–July) and maximum in winter (November–January). The bathwater pH was found to be acidic, average pH 5.9 ± 0.3. An in vivo study with 30 volunteers was undertaken to measure the UIC of 15 bathers immersed in the bath and 15 non-bathers sitting adjacent to the bath. Their UIC was analysed pre- and post-seaweed bath and corrected for creatinine concentration. The corrected UIC of the population shows an increase following the seaweed bath from a pre-treatment median of 76 µg L−1 to a post-treatment median of 95 µg L−1. The pre-treatment UIC for both groups did not indicate significant difference (p = 0.479); however, the post-treatment UIC for both did (p = 0.015) where the median bather test UIC was 86 µg L−1 and the non-bather UIC test was 105 µg L−1. Results indicate the bath has the potential to increase the UIC by a significant amount and that inhalation of volatile iodine is a more significant contributor to UIC than previously documented.