SEGH Articles

Measuring the Bioaccessibility of Potentially Harmful Elements in Soil

01 May 2013
Mark Cave provides some background for bioaccessibility testing and insight into the contribution it has made to the risk assessment industry.
Dr Mark Cave is a leading scientist who has been a major driving force behind the development and adoption of bioaccessibility testing within the risk assessment and contaminated land community.  He is organising an upcoming International Conference in November 2013 at the British Geological Survey, bringing together many world players in bioavailability and bioaccessibility research http://www.bgs.ac.uk/news/events/bioavailabilityWorkshop/home.html.  Here he provides background for bioaccessibility testing and insight into the contribution it has made to the risk assessment industry.
 
In terms of human health risk assessment there are three main exposure pathways for a given contaminant present in soil. The largest area of concern is the oral/ingestion pathway followed by the dermal and respiratory exposure routes (Paustenbach, 2000). Whether contaminated soils pose a human health risk depends on the potential of the contaminant to leave the soil and enter the human bloodstream. The use of total contaminant concentrations in soils provides a conservative approach as it assumes that all of the metal present in the soil can enter the bloodstream. Results from animal tests e.g. (Denys et al., 2012) suggest that contaminants in a soil matrix maybe absorbed to a lesser extent and show fewer toxic effects compared to the same concentration of soluble salts of the contaminants in a food or liquid matrix.
 
There is, therefore, a clear need for a practical methodology that measures the fraction of the contaminant in the soil that, through oral ingestion, can enter the systemic circulation of the human body and cause toxic effects. This is known as the oral bioavailability and can be formally defined as the fraction of an administered dose that reaches the central (blood) compartment from the gastrointestinal tract (Paustenbach, 2000). This term must not to be confused with the oral bioaccessibility of a substance, which is defined as the fraction that is soluble in the gastrointestinal environment and is available for absorption (Paustenbach, 2000).
 
Since bioavailability data is essentially related to the amount of contaminant in the animal/human bloodstream the data must be produced from the dosing of animals with contaminated soil and the subsequent measurement of the contaminant in the blood or organs of the animal; these are known as in-vivo animal models. Bioaccessibility data, however, is normally determined in a test tube environment (in-vitro) and represents the amount of contaminant dissolved in the gastrointestinal tract prior to crossing the mucosal walls. The amount of pollutant which is actually absorbed by an organism is generally less than or equal to the amount which is mobilised (Paustenbach, 2000). Bioaccessibility extraction tests are generally based around the gastrointestinal parameters of young children (0-3 yr). This age group is thought to be at most risk from accidental ingestion of soil. Also, since children can absorb a higher percentage of contaminant through the digestive system than adults, they are more susceptible to adverse health effects (Hamel et al., 1998).
 
Mammal dosing trials are time consuming and expensive. To supersede the use of animals in determining the bioavailability of potentially harmful elements for human health risk assessment, or to estimate bioavailability where animal studies are not available, a potential alternative is the use of in-vitro tests.
 
A number of in vitro bioaccessibility tests for mimicking human ingestion have been reported in the literature. As a result of research carried out by the Bioaccessibility Research Group of Europe (BARGE) and other research groups it was clear that the different bioaccessibility tests showed similar trends when used on the same soil samples, but the different operating conditions for each test produced widely ranging bioaccessibility values between the methods (Oomen et al., 2002). To overcome this problem, BARGE undertook a joint decision to progress the development of a harmonised in vitro bioaccessibility method (the Unified BARGE Method – UBM).
 
The chosen method was the RIVM method (Versantvoort et al., 2004). A schematic outline of the method is shown in Figure 1.
 
 
 

Figure 1 schematic outline of the BARGE unified method

The UBM has now undergone initial inter-laboratory trials (Wragg et al., 2011) and been validated against an in-vivo model (Denys et al., 2012)and has become widely accepted as the method of choice in European Countries.

In a study of the financial impact of research carried out for the Natural Environment Research Council by the British Geological Survey (Natural Environment Research Council (NERC), 2009) examples of the use of bioaccessibility testing were given that showed that:

i) In one case the assessment enabled the re-use of existing site materials as part of the land remediation process, which subsequently led to reduced costs of approximately £3.75 million. In addition, approximately 3,750 lorry trips to landfill were avoided and 105 tonnes of CO2 equivalent were saved. 

ii) In another example, BGS worked with Land Quality Management and University of Nottingham staff to save between £7-£30 million remediation expenses on one site. The more accurate bioaccessibility testing not only reassured local residents, but also allowed the stalled housing market in the area to restart.

Across England, there are an estimated 15,470 hectares of land in need of remediation. The cost of remediating this land is between £100,000-£325,000 per hectare, giving a potential market of £1.5-£5.0 billion. The research methods developed by BGS have the potential to save between £3.9 million and £12.6 million per year in remediating derelict land for development. Over a 20 year period, these cost savings are estimated to have a Net Present Value of between £55.0 million and £178.6 million.

The method is also being used on a national scale to provide bioaccessibility maps arsenic and Pb (Appleton et al., 2012a, b). Figure 2 shows an example of how a combination of the UBM test and data modelling has produced a map of the bioaccessible lead in soils in the Greater London area.

 

Figure 2 Estimated bioaccessible Pb in topsoils in the Greater London area (solid lines = motorways, major (A, B) and minor roads; Ordnance Survey Strategi data © Crown copyright 2012) (Appleton et al., 2012b)

 

Bioaccessibility testing cuts across a number of disciplines including chemistry, geochemistry, toxicology, human health and risk assessment but recent collaborative work untaken by research consortia such as the BARGE group have enabled the development of standardised testing protocols which have a direct impact on human health risk assessment and demonstrable economic benefits when used on a national and international scale.

Dr Mark Cave, British Geological Survey

mrca@bgs.ac.uk


References

Appleton, J D, Cave, M R, and Wragg, J. 2012a. Anthropogenic and geogenic impacts on arsenic bioaccessibility in UK topsoils. Science of the Total Environment, Vol. in Press.

Appleton, J D, Cave, M R, and Wragg, J. 2012b. Modelling lead bioaccessibility in urban topsoils based on data from Glasgow, London, Northampton and Swansea, UK. Environmental Pollution, Vol. in Press.

BARGE. Bioaccessibility Research Group of Europe. Cave, M. [cited November 27]. http://www.bgs.ac.uk/barge/home.html 

Denys, S, Caboche, J, Tack, K, Rychen, G, Wragg, J, Cave, M, Jondreville, C, and Feidt, C. 2012. In Vivo Validation of the Unified BARGE Method to Assess the Bioaccessibility of Arsenic, Antimony, Cadmium, and Lead in Soils. Environmental Science & Technology, Vol. 46, 6252-6260.

Hamel, S C, Buckley, B, and Lioy, P J. 1998. Bioaccessibility of metals in soils for different liquid to solid ratios in synthetic gastric fluid. Environmental Science & Technology, Vol. 32, 358-362.

Natural Environment Research Council (NERC). 2009. Bioaccessibility Testing of Contaminated Land for Threats to Human Health.

Oomen, A G, Hack, A, Minekus, M, Zeijdner, E, Cornelis, C, Schoeters, G, Verstraete, W, Van de Wiele, T, Wragg, J, Rompelberg, C J M, Sips, A, and Van Wijnen, J H. 2002. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science & Technology, Vol. 36, 3326-3334.

Paustenbach, D J. 2000. The practice of exposure assessment: A state-of-the-art review (Reprinted from Principles and Methods of Toxicology, 4th edition, 2001). Journal of Toxicology and Environmental Health-Part B-Critical Reviews, Vol. 3, 179-291. 

Versantvoort, C H M, Van de Kamp, E, and Rompelberg, C J M. 2004. Development and applicability of an in vitro digestion model in assessing the bioaccessibility of contaminants from food. RIVM, RIVM report 320102002/2004 (Bilthoven).

Wragg, J, Cave, M R, Basta, N, Brandon, E, Casteel, S, Denys, S e b, Gron, C, Oomen, A, Reimer, K, Tack, K, and Van de Wiele, T. 2011. An Inter-laboratory Trial of the Unified BARGE Bioaccessibility Method for Arsenic, Cadmium and Lead in Soil. Science of the Total Environment, Vol. 409, 4016-4030.

 

 

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Fate and partitioning of heavy metals in soils from landfill sites in Cape Town, South Africa: a health risk approach to data interpretation 2019-06-14

    Abstract

    The fate and persistence of trace metals in soils and sludge from landfill sites are crucial in determining the hazard posed by landfill, techniques for their restoration and potential reuse purposes of landfill sites after closure and restoration. A modified European Community Bureau of Reference’s (BCR) sequential extraction procedure was applied for partitioning and evaluating the mobility and persistence of trace metals (As, Cd, Cr, Cu, Ni, Pb, Sb, Se, Zn) in soils from three landfill sites and sludge sample from Cape Town, South Africa. Inductively coupled plasma optical emission spectroscopy was used to analyze BCR extracts. The mobility sequence based on the BCR mobile fraction showed that Cu (74–87%), Pb (65–80%), Zn (59–82%) and Cd (55–66%) constituted the mobile metals in the soils from the three sites. The mobility of Cu, Zn and Ni (> 95%) was particularly high in the sludge sample, which showed significant enrichment compared to the soil samples. Geo-accumulation index (Igeo) and risk assessment code were used to further assess the environmental risk of the metals in the soils. Exposure to the soils and sludge did not pose any non-cancer risks to adult and children as the hazard quotient and hazard index values were all below the safe level of 1. The cancer risks from Cd, Cr and Ni require that remedial action be considered during closure and restoration of the landfill sites.

  • An investigation into the use of < 38 µm fraction as a proxy for < 10 µm road dust particles 2019-06-13

    Abstract

    It is well documented that a large portion of urban particulate matters is derived from road dust. Isolating particles of RD which are small enough to be inhaled, however, is a difficult process. In this study, it is shown for the first time that the < 38 µm fraction of road dust particles can be used as a proxy for road dust particles < 10 µm in bioaccessibility studies. This study probed similarities between the < 10 and < 38µm fractions of urban road dust to show that the larger of the two can be used for analysis for which larger sample masses are required, as is the case with in vitro analysis. Road dust, initially segregated to size < 38 µm using sieves, was again size segregated to < 10 µm using water deposition. Both the original < 38 µm and the separated < 10 µm fractions were then subject to single particle analysis by SEM–EDX and bulk analysis by ICP-OES for its elemental composition. Dissolution tests in artificial lysosomal fluid, representative of lung fluid, were carried out on both samples to determine % bioaccessibility of selected potentially harmful elements and thus probe similarities/differences in in vitro behaviour between the two fractions. The separation technique achieved 94.3% of particles < 10 µm in terms of number of particles (the original sample contained 90.4% as determined by SEM–EDX). Acid-soluble metal concentration results indicated differences between the samples. However, when manipulated to negate the input of Si, SEM–EDX data showed general similarities in metal concentrations. Dissolution testing results indicated similar behaviour between the two samples in a simulated biological fluid.

  • Degradation of petroleum hydrocarbons in unsaturated soil and effects on subsequent biodegradation by potassium permanganate 2019-06-13

    Abstract

    To date, the oxidation of petroleum hydrocarbons using permanganate has been investigated rarely. Only a few studies on the remediation of unsaturated soil using permanganate can be found in the literature. This is, to the best of our knowledge, the first study conducted using permanganate pretreatment to degrade petroleum hydrocarbons in unsaturated soil in combination with subsequent bioaugmentation. The pretreatment of diesel-contaminated unsaturated soil with 0.5-pore-volume (5%) potassium permanganate (PP) by solution pouring and foam spraying (with a surfactant) achieved the total petroleum hydrocarbon (TPH) removal efficiencies of 37% and 72.1%, respectively. The PP foam, when coupled with bioaugmentation foam, further degraded the TPH to a final concentration of 438 mg/kg (92.1% total reduction). The experiment was conducted without soil mixing or disturbance. The relatively high TPH removal efficiency achieved by the PP–bioaugmentation serial foam application may be attributed to an increase in soil pH caused by the PP and effective infiltration of the remediation agent by foaming. The applied PP foam increased the pH of the acidic soil, thus enhancing microbial activity. The first-order biodegradation rate after PP oxidation was calculated to be 0.068 d−1. Furthermore, 94% of the group of relatively persistent hydrocarbons (C18–C22) was removed by PP–bioaugmentation, as verified by chromatogram peaks. Some physicochemical parameters related to contaminant removal efficiency were also evaluated. The results reveal that PP can degrade soil TPH and significantly enhance the biodegradation rate in unsaturated diesel-contaminated soil when combined with bioaugmentation foam.