SEGH Articles

Measuring the Bioaccessibility of Potentially Harmful Elements in Soil

01 May 2013
Mark Cave provides some background for bioaccessibility testing and insight into the contribution it has made to the risk assessment industry.
Dr Mark Cave is a leading scientist who has been a major driving force behind the development and adoption of bioaccessibility testing within the risk assessment and contaminated land community.  He is organising an upcoming International Conference in November 2013 at the British Geological Survey, bringing together many world players in bioavailability and bioaccessibility research  Here he provides background for bioaccessibility testing and insight into the contribution it has made to the risk assessment industry.
In terms of human health risk assessment there are three main exposure pathways for a given contaminant present in soil. The largest area of concern is the oral/ingestion pathway followed by the dermal and respiratory exposure routes (Paustenbach, 2000). Whether contaminated soils pose a human health risk depends on the potential of the contaminant to leave the soil and enter the human bloodstream. The use of total contaminant concentrations in soils provides a conservative approach as it assumes that all of the metal present in the soil can enter the bloodstream. Results from animal tests e.g. (Denys et al., 2012) suggest that contaminants in a soil matrix maybe absorbed to a lesser extent and show fewer toxic effects compared to the same concentration of soluble salts of the contaminants in a food or liquid matrix.
There is, therefore, a clear need for a practical methodology that measures the fraction of the contaminant in the soil that, through oral ingestion, can enter the systemic circulation of the human body and cause toxic effects. This is known as the oral bioavailability and can be formally defined as the fraction of an administered dose that reaches the central (blood) compartment from the gastrointestinal tract (Paustenbach, 2000). This term must not to be confused with the oral bioaccessibility of a substance, which is defined as the fraction that is soluble in the gastrointestinal environment and is available for absorption (Paustenbach, 2000).
Since bioavailability data is essentially related to the amount of contaminant in the animal/human bloodstream the data must be produced from the dosing of animals with contaminated soil and the subsequent measurement of the contaminant in the blood or organs of the animal; these are known as in-vivo animal models. Bioaccessibility data, however, is normally determined in a test tube environment (in-vitro) and represents the amount of contaminant dissolved in the gastrointestinal tract prior to crossing the mucosal walls. The amount of pollutant which is actually absorbed by an organism is generally less than or equal to the amount which is mobilised (Paustenbach, 2000). Bioaccessibility extraction tests are generally based around the gastrointestinal parameters of young children (0-3 yr). This age group is thought to be at most risk from accidental ingestion of soil. Also, since children can absorb a higher percentage of contaminant through the digestive system than adults, they are more susceptible to adverse health effects (Hamel et al., 1998).
Mammal dosing trials are time consuming and expensive. To supersede the use of animals in determining the bioavailability of potentially harmful elements for human health risk assessment, or to estimate bioavailability where animal studies are not available, a potential alternative is the use of in-vitro tests.
A number of in vitro bioaccessibility tests for mimicking human ingestion have been reported in the literature. As a result of research carried out by the Bioaccessibility Research Group of Europe (BARGE) and other research groups it was clear that the different bioaccessibility tests showed similar trends when used on the same soil samples, but the different operating conditions for each test produced widely ranging bioaccessibility values between the methods (Oomen et al., 2002). To overcome this problem, BARGE undertook a joint decision to progress the development of a harmonised in vitro bioaccessibility method (the Unified BARGE Method – UBM).
The chosen method was the RIVM method (Versantvoort et al., 2004). A schematic outline of the method is shown in Figure 1.

Figure 1 schematic outline of the BARGE unified method

The UBM has now undergone initial inter-laboratory trials (Wragg et al., 2011) and been validated against an in-vivo model (Denys et al., 2012)and has become widely accepted as the method of choice in European Countries.

In a study of the financial impact of research carried out for the Natural Environment Research Council by the British Geological Survey (Natural Environment Research Council (NERC), 2009) examples of the use of bioaccessibility testing were given that showed that:

i) In one case the assessment enabled the re-use of existing site materials as part of the land remediation process, which subsequently led to reduced costs of approximately £3.75 million. In addition, approximately 3,750 lorry trips to landfill were avoided and 105 tonnes of CO2 equivalent were saved. 

ii) In another example, BGS worked with Land Quality Management and University of Nottingham staff to save between £7-£30 million remediation expenses on one site. The more accurate bioaccessibility testing not only reassured local residents, but also allowed the stalled housing market in the area to restart.

Across England, there are an estimated 15,470 hectares of land in need of remediation. The cost of remediating this land is between £100,000-£325,000 per hectare, giving a potential market of £1.5-£5.0 billion. The research methods developed by BGS have the potential to save between £3.9 million and £12.6 million per year in remediating derelict land for development. Over a 20 year period, these cost savings are estimated to have a Net Present Value of between £55.0 million and £178.6 million.

The method is also being used on a national scale to provide bioaccessibility maps arsenic and Pb (Appleton et al., 2012a, b). Figure 2 shows an example of how a combination of the UBM test and data modelling has produced a map of the bioaccessible lead in soils in the Greater London area.


Figure 2 Estimated bioaccessible Pb in topsoils in the Greater London area (solid lines = motorways, major (A, B) and minor roads; Ordnance Survey Strategi data © Crown copyright 2012) (Appleton et al., 2012b)


Bioaccessibility testing cuts across a number of disciplines including chemistry, geochemistry, toxicology, human health and risk assessment but recent collaborative work untaken by research consortia such as the BARGE group have enabled the development of standardised testing protocols which have a direct impact on human health risk assessment and demonstrable economic benefits when used on a national and international scale.

Dr Mark Cave, British Geological Survey


Appleton, J D, Cave, M R, and Wragg, J. 2012a. Anthropogenic and geogenic impacts on arsenic bioaccessibility in UK topsoils. Science of the Total Environment, Vol. in Press.

Appleton, J D, Cave, M R, and Wragg, J. 2012b. Modelling lead bioaccessibility in urban topsoils based on data from Glasgow, London, Northampton and Swansea, UK. Environmental Pollution, Vol. in Press.

BARGE. Bioaccessibility Research Group of Europe. Cave, M. [cited November 27]. 

Denys, S, Caboche, J, Tack, K, Rychen, G, Wragg, J, Cave, M, Jondreville, C, and Feidt, C. 2012. In Vivo Validation of the Unified BARGE Method to Assess the Bioaccessibility of Arsenic, Antimony, Cadmium, and Lead in Soils. Environmental Science & Technology, Vol. 46, 6252-6260.

Hamel, S C, Buckley, B, and Lioy, P J. 1998. Bioaccessibility of metals in soils for different liquid to solid ratios in synthetic gastric fluid. Environmental Science & Technology, Vol. 32, 358-362.

Natural Environment Research Council (NERC). 2009. Bioaccessibility Testing of Contaminated Land for Threats to Human Health.

Oomen, A G, Hack, A, Minekus, M, Zeijdner, E, Cornelis, C, Schoeters, G, Verstraete, W, Van de Wiele, T, Wragg, J, Rompelberg, C J M, Sips, A, and Van Wijnen, J H. 2002. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science & Technology, Vol. 36, 3326-3334.

Paustenbach, D J. 2000. The practice of exposure assessment: A state-of-the-art review (Reprinted from Principles and Methods of Toxicology, 4th edition, 2001). Journal of Toxicology and Environmental Health-Part B-Critical Reviews, Vol. 3, 179-291. 

Versantvoort, C H M, Van de Kamp, E, and Rompelberg, C J M. 2004. Development and applicability of an in vitro digestion model in assessing the bioaccessibility of contaminants from food. RIVM, RIVM report 320102002/2004 (Bilthoven).

Wragg, J, Cave, M R, Basta, N, Brandon, E, Casteel, S, Denys, S e b, Gron, C, Oomen, A, Reimer, K, Tack, K, and Van de Wiele, T. 2011. An Inter-laboratory Trial of the Unified BARGE Bioaccessibility Method for Arsenic, Cadmium and Lead in Soil. Science of the Total Environment, Vol. 409, 4016-4030.




Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Improving arsenopyrite oxidation rate laws: implications for arsenic mobilization during aquifer storage and recovery (ASR) 2018-04-25


    Aquifer storage and recovery (ASR) and aquifer recharge (AR) provide technical solutions to address water supply deficits and growing future water demands. Unfortunately, the mobilization of naturally present arsenic due to ASR/AR operations has undermined its application on a larger scale. Predicting arsenic mobility in the subsurface during ASR/AR is further complicated by site-specific factors, including the arsenic mobilization mechanisms, groundwater flow conditions, and multi-phase geochemical interactions. In order to ensure safe and sustainable ASR/AR operation, a better understanding of these factors is needed. The current study thus aims to better characterize and model arsenic remobilization at ASR/AR sites by compiling and analyzing available kinetic data on arsenic mobilization from arsenopyrite under different aqueous conditions. More robust and widely applicable rate laws are developed for geochemical conditions relevant to ASR/AR. Sensitivity analysis of these new rate laws gives further insight into the controlling geochemical factors for arsenic mobilization. When improved rate laws are incorporated as the inputs for reactive transport modeling, arsenic mobilization in ASR/AR operations can be predicted with an improved accuracy. The outcomes will be used to guide groundwater monitoring and specify ASR/AR operational parameters, including water pretreatment requirements prior to injection.

  • Heavy metal exposure has adverse effects on the growth and development of preschool children 2018-04-25


    The purpose of this study was to investigate the associations between levels of lead (Pb), cadmium (Cd), chromium (Cr), and manganese (Mn) in the PM2.5 and blood and physical growth, and development parameters including birth length and weight, height, weight, body mass index (BMI), head circumference, and chest circumference in preschool children from Guiyu (e-waste exposure area) and Haojiang (the reference area). A total of 470 preschool children from Guiyu and Haojiang located in southeast coast of China were recruited and required to undergo physical examination and blood tests during the study period. Birth length and weight were obtained by birth records and questionnaire. Pb and Cd in both PM2.5 and blood were significantly higher in Guiyu than Haojiang. Remarkably, the children of Guiyu had significantly lower birth weight and length, BMI, and chest circumference when compare to their peers from the reference area (all p value < 0.05). Spearman correlation analyses showed that blood Pb was negatively correlated with height (r = −0.130, p < 0.001), weight (r = −0.169, p < 0.001), BMI (r = −0.100, p < 0.05), head circumference (r = −0.095, p < 0.05), and chest circumference (r = −0.112, p < 0.05). After adjustment for the potential confounders in further linear regression analyses, blood Pb was negatively associated with height (β = −0.066, p < 0.05), weight (β = −0.119, p < 0.001), head circumference (β = −0.123, p < 0.01), and chest circumference (β = −0.104, p < 0.05), respectively. No significant association between blood Cd, Cr, or Mn was found with any of our developmental outcomes. Taken together, lead exposure limits or delays the growth and development of preschool children.

  • Contamination characteristics of trace metals in dust from different levels of roads of a heavily air-polluted city in north China 2018-04-24


    Concentrations of eight trace metals (TMs) in road dust (RD) (particles < 25 μm) from urban areas of Xinxiang, China, were determined by inductively coupled plasma mass spectrometry. The geometric mean concentrations of Zn, Mn, Pb, As, Cu, Cr, Ni and Cd were 489, 350, 114, 101, 60.0, 39.7, 31.6, and 5.1 mg kg−1, respectively. When compared with TM levels in background soil, the samples generally display elevated TM concentrations, except for Cr and Mn, and for Cd the enrichment value was 69.6. Spatial variations indicated TMs in RD from park path would have similar sources with main roads, collector streets and bypasses. Average daily exposure doses of the studied TMs were about three orders of magnitude higher for hand-to-mouth ingestion than dermal contact, and the exposure doses for children were 9.33 times higher than that for adults. The decreasing trend of calculated hazard indexes (HI) for the eight elements was As > Pb > Cr > Mn > Cd > Zn > Ni > Cu for both children and adults.