SEGH Articles

Modeling global Iodine in Global Atmosphere and its Deposition

08 September 2014
Tomas Sherwen is an Atmospheric Chemistry PhD Student and won the SEGH 2014 student prize for best poster.

 

Iodine is a crucial element for human health. Iodine deficiency in both developing and developed nations is implicated in multiple developmental conditions. The iodine in the food chain originates from the ocean where it is emitted into the atmosphere as either organic (e.g. CH3I, CH2IX) or inorganic (e.g. I2, HOI) compounds. To understand the global environmental distribution of we need to bring together knowledge of the emissions and interactions in the atmosphere that transform and transport iodine and lead to eventual deposition. There are significant uncertainties of atmospheric processing and uptake into the biosphere, but recent and continuing work has providing new insight into the sources iodine and their processing within the global atmosphere. Our work aims to bring together this understanding of atmospheric iodine within a global atmospheric chemistry – transport model, enabling evaluation including spatial understanding that can enable estimation of iodine deposition.

As a PhD student in atmospheric chemistry I am interested in understanding the impacts and interactions of the chemistry of iodine on our atmosphere from its sources in the ocean to its deposition to either the ocean or land surface, and everything in between. The emitted iodine containing compounds are quickly broken down by sunlight to form reaction iodine compounds (I, IO) which undergo further reactions with chemicals compounds in the air. Some of these reactions catalytically destroy ozone, which is key atmospheric oxidant and climate gas, whilst others can impact the concentration of methane (another climate gas). By combining our knowledge of these emissions with our understanding of the atmospheric chemistry and physics that process these species in the atmosphere we can model the resultant transport of iodine and it deposition to the land.

Our iodine simulations are implemented into a community chemical transport model (GEOS-Chem, www.geos-chem.org). This approach splits the world in boxes, vertically and horizontally, integrating the changes due to chemical reaction and physical processes (dry & wet deposition, photolysis, heterogeneous reactions, etc ) over time. The chemical species are then transported between the boxes via metrology derived from observations. Thus we can compare observation of iodine compounds with predictions from our model. We can then answer quantitative questions about the global iodine system, pulling together experimental knowledge together with our theoretical understanding of chemistry and physics. Through simulations, uncertainties and their impacts can be explored, helping to highlight future research directions.

The ability to understand Iodine from oceanic emission through to photochemical transformations and atmospheric deposition, allows for an estimation of depositional iodine fluxes and comparison with previous approaches. To develop this understanding to estimate resultant bioavailable iodine from these depositional fluxes will require further work considering terrestrial and ecological processing.

by Tomas Sherwen, PhD student

Wolfson Atmospheric Chemistry Laboratories (WACL)

Department of Chemistry

University of York

 

Further information can be found:

Saiz-Lopez, A., et al., Atmospheric Chemistry of Iodine. Chemical Reviews, 2012. 112(3): p. 1773-1804.

Carpenter, L.J., et al., Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine. Nature Geosci, 2013. 6(2): p. 108-111. 

Chance, R., et al., The distribution of iodide at the sea surface. Environmental Science: Processes & Impacts, 2014. 16(8): p. 1841-1859.

The International Council for the Control of Iodine Deficiency Disorders (ICCIDD) - www.iccidd.org

GEOS-Chem - www.geos-chem.org

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Improving arsenopyrite oxidation rate laws: implications for arsenic mobilization during aquifer storage and recovery (ASR) 2018-04-25

    Abstract

    Aquifer storage and recovery (ASR) and aquifer recharge (AR) provide technical solutions to address water supply deficits and growing future water demands. Unfortunately, the mobilization of naturally present arsenic due to ASR/AR operations has undermined its application on a larger scale. Predicting arsenic mobility in the subsurface during ASR/AR is further complicated by site-specific factors, including the arsenic mobilization mechanisms, groundwater flow conditions, and multi-phase geochemical interactions. In order to ensure safe and sustainable ASR/AR operation, a better understanding of these factors is needed. The current study thus aims to better characterize and model arsenic remobilization at ASR/AR sites by compiling and analyzing available kinetic data on arsenic mobilization from arsenopyrite under different aqueous conditions. More robust and widely applicable rate laws are developed for geochemical conditions relevant to ASR/AR. Sensitivity analysis of these new rate laws gives further insight into the controlling geochemical factors for arsenic mobilization. When improved rate laws are incorporated as the inputs for reactive transport modeling, arsenic mobilization in ASR/AR operations can be predicted with an improved accuracy. The outcomes will be used to guide groundwater monitoring and specify ASR/AR operational parameters, including water pretreatment requirements prior to injection.

  • Heavy metal exposure has adverse effects on the growth and development of preschool children 2018-04-25

    Abstract

    The purpose of this study was to investigate the associations between levels of lead (Pb), cadmium (Cd), chromium (Cr), and manganese (Mn) in the PM2.5 and blood and physical growth, and development parameters including birth length and weight, height, weight, body mass index (BMI), head circumference, and chest circumference in preschool children from Guiyu (e-waste exposure area) and Haojiang (the reference area). A total of 470 preschool children from Guiyu and Haojiang located in southeast coast of China were recruited and required to undergo physical examination and blood tests during the study period. Birth length and weight were obtained by birth records and questionnaire. Pb and Cd in both PM2.5 and blood were significantly higher in Guiyu than Haojiang. Remarkably, the children of Guiyu had significantly lower birth weight and length, BMI, and chest circumference when compare to their peers from the reference area (all p value < 0.05). Spearman correlation analyses showed that blood Pb was negatively correlated with height (r = −0.130, p < 0.001), weight (r = −0.169, p < 0.001), BMI (r = −0.100, p < 0.05), head circumference (r = −0.095, p < 0.05), and chest circumference (r = −0.112, p < 0.05). After adjustment for the potential confounders in further linear regression analyses, blood Pb was negatively associated with height (β = −0.066, p < 0.05), weight (β = −0.119, p < 0.001), head circumference (β = −0.123, p < 0.01), and chest circumference (β = −0.104, p < 0.05), respectively. No significant association between blood Cd, Cr, or Mn was found with any of our developmental outcomes. Taken together, lead exposure limits or delays the growth and development of preschool children.

  • Contamination characteristics of trace metals in dust from different levels of roads of a heavily air-polluted city in north China 2018-04-24

    Abstract

    Concentrations of eight trace metals (TMs) in road dust (RD) (particles < 25 μm) from urban areas of Xinxiang, China, were determined by inductively coupled plasma mass spectrometry. The geometric mean concentrations of Zn, Mn, Pb, As, Cu, Cr, Ni and Cd were 489, 350, 114, 101, 60.0, 39.7, 31.6, and 5.1 mg kg−1, respectively. When compared with TM levels in background soil, the samples generally display elevated TM concentrations, except for Cr and Mn, and for Cd the enrichment value was 69.6. Spatial variations indicated TMs in RD from park path would have similar sources with main roads, collector streets and bypasses. Average daily exposure doses of the studied TMs were about three orders of magnitude higher for hand-to-mouth ingestion than dermal contact, and the exposure doses for children were 9.33 times higher than that for adults. The decreasing trend of calculated hazard indexes (HI) for the eight elements was As > Pb > Cr > Mn > Cd > Zn > Ni > Cu for both children and adults.