SEGH Articles

Modeling global Iodine in Global Atmosphere and its Deposition

08 September 2014
Tomas Sherwen is an Atmospheric Chemistry PhD Student and won the SEGH 2014 student prize for best poster.

 

Iodine is a crucial element for human health. Iodine deficiency in both developing and developed nations is implicated in multiple developmental conditions. The iodine in the food chain originates from the ocean where it is emitted into the atmosphere as either organic (e.g. CH3I, CH2IX) or inorganic (e.g. I2, HOI) compounds. To understand the global environmental distribution of we need to bring together knowledge of the emissions and interactions in the atmosphere that transform and transport iodine and lead to eventual deposition. There are significant uncertainties of atmospheric processing and uptake into the biosphere, but recent and continuing work has providing new insight into the sources iodine and their processing within the global atmosphere. Our work aims to bring together this understanding of atmospheric iodine within a global atmospheric chemistry – transport model, enabling evaluation including spatial understanding that can enable estimation of iodine deposition.

As a PhD student in atmospheric chemistry I am interested in understanding the impacts and interactions of the chemistry of iodine on our atmosphere from its sources in the ocean to its deposition to either the ocean or land surface, and everything in between. The emitted iodine containing compounds are quickly broken down by sunlight to form reaction iodine compounds (I, IO) which undergo further reactions with chemicals compounds in the air. Some of these reactions catalytically destroy ozone, which is key atmospheric oxidant and climate gas, whilst others can impact the concentration of methane (another climate gas). By combining our knowledge of these emissions with our understanding of the atmospheric chemistry and physics that process these species in the atmosphere we can model the resultant transport of iodine and it deposition to the land.

Our iodine simulations are implemented into a community chemical transport model (GEOS-Chem, www.geos-chem.org). This approach splits the world in boxes, vertically and horizontally, integrating the changes due to chemical reaction and physical processes (dry & wet deposition, photolysis, heterogeneous reactions, etc ) over time. The chemical species are then transported between the boxes via metrology derived from observations. Thus we can compare observation of iodine compounds with predictions from our model. We can then answer quantitative questions about the global iodine system, pulling together experimental knowledge together with our theoretical understanding of chemistry and physics. Through simulations, uncertainties and their impacts can be explored, helping to highlight future research directions.

The ability to understand Iodine from oceanic emission through to photochemical transformations and atmospheric deposition, allows for an estimation of depositional iodine fluxes and comparison with previous approaches. To develop this understanding to estimate resultant bioavailable iodine from these depositional fluxes will require further work considering terrestrial and ecological processing.

by Tomas Sherwen, PhD student

Wolfson Atmospheric Chemistry Laboratories (WACL)

Department of Chemistry

University of York

 

Further information can be found:

Saiz-Lopez, A., et al., Atmospheric Chemistry of Iodine. Chemical Reviews, 2012. 112(3): p. 1773-1804.

Carpenter, L.J., et al., Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine. Nature Geosci, 2013. 6(2): p. 108-111. 

Chance, R., et al., The distribution of iodide at the sea surface. Environmental Science: Processes & Impacts, 2014. 16(8): p. 1841-1859.

The International Council for the Control of Iodine Deficiency Disorders (ICCIDD) - www.iccidd.org

GEOS-Chem - www.geos-chem.org

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Characteristics of PM 2.5 , CO 2 and particle-number concentration in mass transit railway carriages in Hong Kong 2017-08-01

    Abstract

    Fine particulate matter (PM2.5) levels, carbon dioxide (CO2) levels and particle-number concentrations (PNC) were monitored in train carriages on seven routes of the mass transit railway in Hong Kong between March and May 2014, using real-time monitoring instruments. The 8-h average PM2.5 levels in carriages on the seven routes ranged from 24.1 to 49.8 µg/m3, higher than levels in Finland and similar to those in New York, and in most cases exceeding the standard set by the World Health Organisation (25 µg/m3). The CO2 concentration ranged from 714 to 1801 ppm on four of the routes, generally exceeding indoor air quality guidelines (1000 ppm over 8 h) and reaching levels as high as those in Beijing. PNC ranged from 1506 to 11,570 particles/cm3, lower than readings in Sydney and higher than readings in Taipei. Correlation analysis indicated that the number of passengers in a given carriage did not affect the PM2.5 concentration or PNC in the carriage. However, a significant positive correlation (p < 0.001, R 2 = 0.834) was observed between passenger numbers and CO2 levels, with each passenger contributing approximately 7.7–9.8 ppm of CO2. The real-time measurements of PM2.5 and PNC varied considerably, rising when carriage doors opened on arrival at a station and when passengers inside the carriage were more active. This suggests that air pollutants outside the train and passenger movements may contribute to PM2.5 levels and PNC. Assessment of the risk associated with PM2.5 exposure revealed that children are most severely affected by PM2.5 pollution, followed in order by juveniles, adults and the elderly. In addition, females were found to be more vulnerable to PM2.5 pollution than males (p < 0.001), and different subway lines were associated with different levels of risk.

  • Comparison of chemical compositions in air particulate matter during summer and winter in Beijing, China 2017-08-01

    Abstract

    The development of industry in Beijing, the capital of China, particularly in last decades, has caused severe environmental pollution including particulate matter (PM), dust–haze, and photochemical smog, which has already caused considerable harm to local ecological environment. Thus, in this study, air particle samples were continuously collected in August and December, 2014. And elements (Si, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Cd, Ba, Pb and Ti) and ions ( \({\text{NO}}_{3}^{-}\) , \({\text{SO}}_{4}^{2-}\) , F, Cl, Na+, K+, Mg2+, Ca2+ and \({\text{NH}}_{4}^{+}\) ) were analyzed by inductively coupled plasma mass spectrometer and ion chromatography. According to seasonal changes, discuss the various pollution situations in order to find possible particulate matter sources and then propose appropriate control strategies to local government. The results indicated serious PM and metallic pollution in some sampling days, especially in December. Chemical Mass Balance model revealed central heating activities, road dust and vehicles contribute as main sources, account for 5.84–32.05 % differently to the summer and winter air pollution in 2014.

  • Annual ambient atmospheric mercury speciation measurement from Longjing, a rural site in Taiwan 2017-08-01

    Abstract

    The main purpose of this study was to monitor ambient air particulates and mercury species [RGM, Hg(p), GEM and total mercury] concentrations and dry depositions over rural area at Longjing in central Taiwan during October 2014 to September 2015. In addition, passive air sampler and knife-edge surrogate surface samplers were used to collect the ambient air mercury species concentrations and dry depositions, respectively, in this study. Moreover, direct mercury analyzer was directly used to detect the mercury Hg(p) and RGM concentrations. The result indicated that: (1) The average highest RGM, Hg(p), GEM and total mercury concentrations, and dry depositions were observed in January, prevailing dust storm occurred in winter season was the possible major reason responsible for the above findings. (2) The highest average RGM, Hg(p), GEM and total mercury concentrations, dry depositions and velocities were occurred in winter. This is because that China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. (3) The results indicated that the total mercury ratios of Kaohsiung to that of this study were 5.61. This is because that Kaohsiung has the largest industry density (~60 %) in Taiwan. (4) the USA showed average lower mercury species concentrations when compared to those of the other world countries. The average ratios of China/USA values were 89, 76 and 160 for total mercury, RGM and Hg(p), respectively, during the years of 2000–2012.