SEGH Articles

Modeling global Iodine in Global Atmosphere and its Deposition

08 September 2014
Tomas Sherwen is an Atmospheric Chemistry PhD Student and won the SEGH 2014 student prize for best poster.

 

Iodine is a crucial element for human health. Iodine deficiency in both developing and developed nations is implicated in multiple developmental conditions. The iodine in the food chain originates from the ocean where it is emitted into the atmosphere as either organic (e.g. CH3I, CH2IX) or inorganic (e.g. I2, HOI) compounds. To understand the global environmental distribution of we need to bring together knowledge of the emissions and interactions in the atmosphere that transform and transport iodine and lead to eventual deposition. There are significant uncertainties of atmospheric processing and uptake into the biosphere, but recent and continuing work has providing new insight into the sources iodine and their processing within the global atmosphere. Our work aims to bring together this understanding of atmospheric iodine within a global atmospheric chemistry – transport model, enabling evaluation including spatial understanding that can enable estimation of iodine deposition.

As a PhD student in atmospheric chemistry I am interested in understanding the impacts and interactions of the chemistry of iodine on our atmosphere from its sources in the ocean to its deposition to either the ocean or land surface, and everything in between. The emitted iodine containing compounds are quickly broken down by sunlight to form reaction iodine compounds (I, IO) which undergo further reactions with chemicals compounds in the air. Some of these reactions catalytically destroy ozone, which is key atmospheric oxidant and climate gas, whilst others can impact the concentration of methane (another climate gas). By combining our knowledge of these emissions with our understanding of the atmospheric chemistry and physics that process these species in the atmosphere we can model the resultant transport of iodine and it deposition to the land.

Our iodine simulations are implemented into a community chemical transport model (GEOS-Chem, www.geos-chem.org). This approach splits the world in boxes, vertically and horizontally, integrating the changes due to chemical reaction and physical processes (dry & wet deposition, photolysis, heterogeneous reactions, etc ) over time. The chemical species are then transported between the boxes via metrology derived from observations. Thus we can compare observation of iodine compounds with predictions from our model. We can then answer quantitative questions about the global iodine system, pulling together experimental knowledge together with our theoretical understanding of chemistry and physics. Through simulations, uncertainties and their impacts can be explored, helping to highlight future research directions.

The ability to understand Iodine from oceanic emission through to photochemical transformations and atmospheric deposition, allows for an estimation of depositional iodine fluxes and comparison with previous approaches. To develop this understanding to estimate resultant bioavailable iodine from these depositional fluxes will require further work considering terrestrial and ecological processing.

by Tomas Sherwen, PhD student

Wolfson Atmospheric Chemistry Laboratories (WACL)

Department of Chemistry

University of York

 

Further information can be found:

Saiz-Lopez, A., et al., Atmospheric Chemistry of Iodine. Chemical Reviews, 2012. 112(3): p. 1773-1804.

Carpenter, L.J., et al., Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine. Nature Geosci, 2013. 6(2): p. 108-111. 

Chance, R., et al., The distribution of iodide at the sea surface. Environmental Science: Processes & Impacts, 2014. 16(8): p. 1841-1859.

The International Council for the Control of Iodine Deficiency Disorders (ICCIDD) - www.iccidd.org

GEOS-Chem - www.geos-chem.org

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Agro-ecological suitability assessment of Chinese Medicinal Yam under future climate change 2019-10-15

    Abstract

    Chinese Medicinal Yam (CMY) has been prescribed as medicinal food for thousand years in China by Traditional Chinese Medicine (TCM) practitioners. Its medical benefits include nourishing the stomach and spleen to improve digestion, replenishing lung and kidney, etc., according to the TCM literature. As living standard rises and public health awareness improves in recent years, the potential medicinal benefits of CMY have attracted increasing attention in China. It has been found that the observed climate change in last several decades, together with the change in economic structure, has driven significant shift in the pattern of the traditional CMY planting areas. To identify suitable planting area for CMY in the near future is critical for ensuring the quality and supply quantity of CMY, guiding the layout of CMY industry, and safeguarding the sustainable development of CMY resources for public health. In this study, we first collect 30-year records of CMY varieties and their corresponding phenology and agro-meteorological observations. We then consolidate these data and use them to enrich and update the eco-physiological parameters of CMY in the agro-ecological zone (AEZ) model. The updated CMY varieties and AEZ model are validated using the historical planting area and production under observed climate conditions. After the successful validation, we use the updated AEZ model to simulate the potential yield of CMY and identify the suitable planting regions under future climate projections in China. This study shows that regions with high ecological similarity to the genuine and core producing areas of CMY mainly distribute in eastern Henan, southeastern Hebei, and western Shandong. The climate suitability of these areas will be improved due to global warming in the next 50 years, and therefore, they will continue to be the most suitable CMY planting regions.

  • Application of stable isotopes and dissolved ions for monitoring landfill leachate contamination 2019-10-15

    Abstract

    We evaluated groundwater contamination by landfill leachate at a municipal landfill and characterized isotopic and hydrogeochemical evidence of the degradation and natural attenuation of buried organic matter at the study site. Dissolved ion content was generally much higher in the leachate than in the surrounding groundwater. The leachate was characterized by highly elevated bicarbonate and ammonium levels and a lack of nitrate and sulfate, indicating generation under anoxic conditions. Leachate δD and δ13CDIC values were much higher than those of the surrounding groundwater; some groundwater samples near the landfill showed a significant contamination by the leachate plume. Hydrochemical characteristics of the groundwater suggest that aquifer geology in the study area plays a key role in controlling the natural attenuation of leachate plumes in this oxygen-limited environment.

  • Lead transfer into the vegetation layer growing naturally in a Pb-contaminated site 2019-10-10

    Abstract

    The lead was one of the main elements in the glazes used to colour ceramic tiles. Due to its presence, ceramic sludge has been a source of environmental pollution since this dangerous waste has been often spread into the soil without any measures of pollution control. These contaminated sites are often located close to industrial sites in the peri-urban areas, thus representing a considerable hazard to the human and ecosystem health. In this study, we investigated the lead transfer into the vegetation layer (Phragmites australis, Salix alba and Sambucus nigra) growing naturally along a Pb-contaminated ditch bank. The analysis showed a different lead accumulation among the species and their plant tissues. Salix trees were not affected by the Pb contamination, possibly because their roots mainly develop below the contaminated deposit. Differently, Sambucus accumulated high concentrations of lead in all plant tissues and fruits, representing a potential source of biomagnification. Phragmites accumulated large amounts of lead in the rhizomes and, considering its homogeneous distribution on the site, was used to map the contamination. Analysing the Pb concentration within plant tissues, we got at the same time information about the spread, the history of the contamination and the relative risks. Finally, we discussed the role of natural recolonizing plants for the soil pollution mitigation and their capacity on decreasing soil erosion and water run-off.