SEGH Articles

Multiproxy climate reconstruction from raised bog deposits along the West Coast of the British Isles

01 August 2011
Anke Kuttner was Runner up for the Springer / Hemphill Prize for Student Poster presentation at SEGH 2011 in Ormskirk, UK.

Raised peat bogs are closely coupled to the atmosphere and oceans due to their ombrotrophic state. They record variations within the peat layers and accumulate at a high rate (~5/10 years cm-1) offering reliable, high resolution palaeoenvironmental archives. Their archive records can be reconstructed using a range of techniques. In the past palaeoclimate reconstructions were commonly based on either biological or geochemical data. There are, however, problems such as preservation and mobility respectively associated with each of these techniques. Combining biological and geochemical tools can compensate for such weaknesses and help gain a more accurate picture of past palaeoclimate changes. However, few studies to date have embraced the advances of genuine multiproxy analyses.

The objective of our study conducted at the University of Aberdeen is to apply biological and geochemical proxies together to gain an improved understanding of past climate change. We aim to explore potential correlations between wet as well as dry indicators of either proxy type.

We are studying three different sites along the West coast of the British Isles with varying degrees of exposure to the North Atlantic. The first site, Tyndrain, is located in the Northwest of Wales in the Snowdonia National Park. The depth of the deposit is up to 4 m with the raised phase starting around 2.50 m. This depicts the change from minerotrophic (groundwater influence) to ombrotrophic (atmospheric influence only).

The other sites are Annaholty, a raised bog deposit in Clare, SW Ireland, and Raeburn Flow, a deposit on the Solway Firth, S Scotland.

 For biological data we look at plant macrofossils, using the Quadrat & Leaf Count technique as well as Testate amoebae specimen counts. As geochemical proxies we investigate the distribution of lithogenic versus marine derived elements as well as anthropogenic elements. Chronologies are based on 14C and 210Pb dating.

 

The first results for Tyndrain show that the botanical and geochemical fen-bog transition are located at different depths in the profile. The geochemical transition is distinctively higher up. We can however, pick up a big shift in all proxies around ~2800 cal BP. This coincides well with a wetshift recognisable in numerous deposits all over the world.

As for the desired correlations, we have contradicting results. However, it is possible to see some matching peaks for the various proxies in terms of wetshifts and droughts throughout the profile. An important factor influencing the distribution of lithogenic elements and their interpretation is land use.

 Our palaeoclimate reconstructions for the Tyndrain raised bog deposit show that analysing just one proxy may mask changes in bog surface wetness. However, combining biological and geochemical data can improve insight as well as raise more questions. It is therefore crucial to conduct more studies to determine consistent patterns.

Furthermore, one important denouement is that even within relatively short distances there can be high intrasite variability within peat bog ecosystems.

Anke Küttner, Dmitri Mauqouy, Tim Mighall, Eva Krupp, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Membrane fouling control by Ca 2+ during coagulation–ultrafiltration process for algal-rich water treatment 2019-04-16

    Abstract

    Seasonal algal bloom, a water supply issue worldwide, can be efficiently solved by membrane technology. However, membranes typically suffer from serious fouling, which hinders the wide application of this technology. In this study, the feasibility of adding Ca2+ to control membrane fouling in coagulation–membrane treatment of algal-rich water was investigated. According to the results obtained, the normalized membrane flux decreased by a lower extent upon increasing the concentration of Ca2+ from 0 to 10 mmol/L. Simultaneously, the floc particle size increased significantly with the concentration of Ca2+, which leads to a lower hydraulic resistance. The coagulation performance is also enhanced with the concentration of Ca2+, inducing a slight osmotic pressure-induced resistance. The formation of Ca2+ coagulation flocs resulted in a looser, thin, and permeable cake layer on the membrane surface. This cake layer rejected organic pollutants and could be easily removed by physical and chemical cleaning treatments, as revealed by scanning electron microscopy images. The hydraulic irreversible membrane resistance was significantly reduced upon addition of Ca2+. All these findings suggest that the addition of Ca2+ may provide a simple-operation, cost-effective, and environmentally friendly technology for controlling membrane fouling during coagulation–membrane process for algal-rich water treatment.

  • Evaluation of the raw water quality: physicochemical and toxicological approaches 2019-04-13

    Abstract

    Environmental degradation has increased, mainly as a result of anthropogenic effects arising from population, industrial and agricultural growth. Water pollution is a problem that affects health, safety and welfare of the whole biota which shares the same environment. In Goiânia and metropolitan region, the main water body is the Meia Ponte River that is used for the abstraction of water, disposal of treated wastewater and effluents. In addition, this river receives wastewater from urban and rural areas. The aim in this present study was to evaluate the quality of raw water by some physical, chemical and toxicological tests. The physicochemical results found high levels of turbidity, conductivity, aluminum, phosphorus and metal iron, manganese, copper and lithium when compared to the standards of the Brazilian legislation. The values found of toxicity demonstrated a high degree of cytotoxicity and genotoxicity. Therefore, it was concluded that the Meia Ponte River has been undergoing constant environmental degradation, causing the poor quality of its waters. Thus, measures for the prevention and recovery should be adopted for the maintenance of the Meia Ponte River.

  • Review of the nature of some geophagic materials and their potential health effects on pregnant women: some examples from Africa 2019-04-11

    Abstract

    The voluntary human consumption of soil known as geophagy is a global practice and deep-rooted in many African cultures. The nature of geophagic material varies widely from the types to the composition. Generally, clay and termite mound soils are the main materials consumed by geophagists. Several studies revealed that gestating women across the world consume more soil than other groups for numerous motives. These motivations are related to medicinal, cultural and nutrients supplementation. Although geophagy in pregnancy (GiP) is a universal dynamic habit, the highest prevalence has been reported in African countries such as Kenya, Ghana, Rwanda, Nigeria, Tanzania, and South Africa. Geophagy can be both beneficial and detrimental. Its health effects depend on the amount and composition of the ingested soils, which is subjective to the geology and soil formation processes. In most cases, the negative health effects concomitant with the practice of geophagy eclipse the positive effects. Therefore, knowledge about the nature of geophagic material and the health effects that might arise from their consumption is important.