SEGH Articles

Multiproxy climate reconstruction from raised bog deposits along the West Coast of the British Isles

01 August 2011
Anke Kuttner was Runner up for the Springer / Hemphill Prize for Student Poster presentation at SEGH 2011 in Ormskirk, UK.

Raised peat bogs are closely coupled to the atmosphere and oceans due to their ombrotrophic state. They record variations within the peat layers and accumulate at a high rate (~5/10 years cm-1) offering reliable, high resolution palaeoenvironmental archives. Their archive records can be reconstructed using a range of techniques. In the past palaeoclimate reconstructions were commonly based on either biological or geochemical data. There are, however, problems such as preservation and mobility respectively associated with each of these techniques. Combining biological and geochemical tools can compensate for such weaknesses and help gain a more accurate picture of past palaeoclimate changes. However, few studies to date have embraced the advances of genuine multiproxy analyses.

The objective of our study conducted at the University of Aberdeen is to apply biological and geochemical proxies together to gain an improved understanding of past climate change. We aim to explore potential correlations between wet as well as dry indicators of either proxy type.

We are studying three different sites along the West coast of the British Isles with varying degrees of exposure to the North Atlantic. The first site, Tyndrain, is located in the Northwest of Wales in the Snowdonia National Park. The depth of the deposit is up to 4 m with the raised phase starting around 2.50 m. This depicts the change from minerotrophic (groundwater influence) to ombrotrophic (atmospheric influence only).

The other sites are Annaholty, a raised bog deposit in Clare, SW Ireland, and Raeburn Flow, a deposit on the Solway Firth, S Scotland.

 For biological data we look at plant macrofossils, using the Quadrat & Leaf Count technique as well as Testate amoebae specimen counts. As geochemical proxies we investigate the distribution of lithogenic versus marine derived elements as well as anthropogenic elements. Chronologies are based on 14C and 210Pb dating.


The first results for Tyndrain show that the botanical and geochemical fen-bog transition are located at different depths in the profile. The geochemical transition is distinctively higher up. We can however, pick up a big shift in all proxies around ~2800 cal BP. This coincides well with a wetshift recognisable in numerous deposits all over the world.

As for the desired correlations, we have contradicting results. However, it is possible to see some matching peaks for the various proxies in terms of wetshifts and droughts throughout the profile. An important factor influencing the distribution of lithogenic elements and their interpretation is land use.

 Our palaeoclimate reconstructions for the Tyndrain raised bog deposit show that analysing just one proxy may mask changes in bog surface wetness. However, combining biological and geochemical data can improve insight as well as raise more questions. It is therefore crucial to conduct more studies to determine consistent patterns.

Furthermore, one important denouement is that even within relatively short distances there can be high intrasite variability within peat bog ecosystems.

Anke Küttner, Dmitri Mauqouy, Tim Mighall, Eva Krupp, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Ecological impact of the antibiotic ciprofloxacin on microbial community of aerobic activated sludge 2019-08-16


    This study investigated the effects and fate of the antibiotic ciprofloxacin (CIP) at environmentally relevant levels (50–500 µg/L) in activated sludge (AS) microbial communities under aerobic conditions. Exposure to 500 µg/L of CIP decreased species diversity by about 20% and significantly altered the phylogenetic structure of AS communities compared to those of control communities (no CIP exposure), while there were no significant changes upon exposure to 50 µg/L of CIP. Analysis of community composition revealed that exposure to 500 µg/L of CIP significantly reduced the relative abundance of Rhodobacteraceae and Nakamurellaceae by more than tenfold. These species frequently occur in AS communities across many full-scale wastewater treatment plants and are involved in key ecosystem functions (i.e., organic matter and nitrogen removal). Our analyses showed that 50–500 µg/L CIP was poorly removed in AS (about 20% removal), implying that the majority of CIP from AS processes may be released with either their effluents or waste sludge. We therefore strongly recommend further research on CIP residuals and/or post-treatment processes (e.g., anaerobic digestion) for waste streams that may cause ecological risks in receiving water bodies.

  • Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: a high density sampling survey in the Parauapebas basin, Brazilian Amazon 2019-08-10


    A high-density regional-scale soil geochemical survey comprising 727 samples (one sample per each 5 × 5 km grid) was carried out in the Parauapebas sub-basin of the Brazilian Amazonia, under the Itacaiúnas Basin Geochemical Mapping and Background Project. Samples were taken from two depths at each site: surface soil, 0–20 cm and deep soil, 30–50 cm. The ground and sieved (< 75 µm) fraction was digested using aqua regia and analyzed for 51 elements by inductively coupled plasma mass spectrometry (ICPMS). All data were used here, but the principal focus was on the potential toxic elements (PTEs) and Fe and Mn to evaluate the spatial distribution patterns and to establish their geochemical background concentrations in soils. Geochemical maps as well as principal component analysis (PCA) show that the distribution patterns of the elements are very similar between surface and deep soils. The PCA, applied on clr-transformed data, identified four major associations: Fe–Ti–V–Sc–Cu–Cr–Ni (Gp-1); Zr–Hf–U–Nb–Th–Al–P–Mo–Ga (Gp-2); K–Na–Ca–Mg–Ba–Rb–Sr (Gp-3); and La–Ce–Co–Mn–Y–Zn–Cd (Gp-4). Moreover, the distribution patterns of elements varied significantly among the three major geological domains. The whole data indicate a strong imprint of local geological setting in the geochemical associations and point to a dominant geogenic origin for the analyzed elements. Copper and Fe in Gp-1 were enriched in the Carajás basin and are associated with metavolcanic rocks and banded-iron formations, respectively. However, the spatial distribution of Cu is also highly influenced by two hydrothermal mineralized copper belts. Ni–Cr in Gp-1 are highly correlated and spatially associated with mafic and ultramafic units. The Gp-2 is partially composed of high field strength elements (Zr, Hf, Nb, U, Th) that could be linked to occurrences of A-type Neoarchean granites. The Gp-3 elements are mobile elements which are commonly found in feldspars and other rock-forming minerals being liberated by chemical weathering. The background threshold values (BTV) were estimated separately for surface and deep soils using different methods. The ‘75th percentile’, which commonly used for the estimation of the quality reference values (QRVs) following the Brazilian regulation, gave more restrictive or conservative (low) BTVs, while the ‘MMAD’ was more realistic to define high BTVs that can better represent the so-called mineralized/normal background. Compared with CONAMA Resolution (No. 420/2009), the conservative BTVs of most of the toxic elements were below the prevention limits (PV), except Cu, but when the high BTVs are considered, Cu, Co, Cr and Ni exceeded the PV limits. The degree of contamination (Cdeg), based on the conservative BTVs, indicates low contamination, except in the Carajás basin, which shows many anomalies and had high contamination mainly from Cu, Cr and Ni, but this is similar between surface and deep soils indicating that the observed high anomalies are strictly related to geogenic control. This is supported when the Cdeg is calculated using the high BTVs, which indicates low contamination. This suggests that the use of only conservative BTVs for the entire region might overestimate the significance of anthropogenic contamination; thus, we suggest the use of high BTVs for effective assessment of soil contamination in this region. The methodology and results of this study may help developing strategies for geochemical mapping in other Carajás soils or in other Amazonian soils with similar characteristics.

  • Uptake of Cd, Pb, and Ni by Origanum syriacum produced in Lebanon 2019-08-06


    Trace metals are found naturally in soil. However, the increase in industrial and agricultural polluting activities has increased trace metal contamination and raised high concerns in the public health sector. The study was conducted on Origanum syriacum, one of the most consumed herbs in the Middle East, and was divided into three parts. (1) Pot experiment: to study the effect of Cd, Pb, or Ni levels in soil on their uptake by O. syriacum. (2) Field samples: collected from major agricultural regions in Lebanon to analyze Cd, Pb, and Ni concentrations in soil and leaves. (3) Sale outlets samples: to measure the levels of Cd, Pb, and Ni in O. syriacum tissues in the market. Results showed that there was a positive correlation between levels of Cd, Pb, and Ni in soil and those in O. syriacum tissues. None of the field samples contained Pb or Ni that exceeded the maximum allowable limits (MAL). Three samples collected from heavily poultry-manured soil contained Cd higher than the MAL. Samples collected from sale outlets did not exceed the MAL for Ni but two exceeded the MAL for Cd and one for Pb. Trace metal contamination is not a major concern in O. syriacum produced in Lebanon. Only one mixture sample from a sale outlet was higher in Pb than the MAL and three samples from heavily manured fields exceeded the MAL for Cd.