SEGH Articles

Multiproxy climate reconstruction from raised bog deposits along the West Coast of the British Isles

01 August 2011
Anke Kuttner was Runner up for the Springer / Hemphill Prize for Student Poster presentation at SEGH 2011 in Ormskirk, UK.

Raised peat bogs are closely coupled to the atmosphere and oceans due to their ombrotrophic state. They record variations within the peat layers and accumulate at a high rate (~5/10 years cm-1) offering reliable, high resolution palaeoenvironmental archives. Their archive records can be reconstructed using a range of techniques. In the past palaeoclimate reconstructions were commonly based on either biological or geochemical data. There are, however, problems such as preservation and mobility respectively associated with each of these techniques. Combining biological and geochemical tools can compensate for such weaknesses and help gain a more accurate picture of past palaeoclimate changes. However, few studies to date have embraced the advances of genuine multiproxy analyses.

The objective of our study conducted at the University of Aberdeen is to apply biological and geochemical proxies together to gain an improved understanding of past climate change. We aim to explore potential correlations between wet as well as dry indicators of either proxy type.

We are studying three different sites along the West coast of the British Isles with varying degrees of exposure to the North Atlantic. The first site, Tyndrain, is located in the Northwest of Wales in the Snowdonia National Park. The depth of the deposit is up to 4 m with the raised phase starting around 2.50 m. This depicts the change from minerotrophic (groundwater influence) to ombrotrophic (atmospheric influence only).

The other sites are Annaholty, a raised bog deposit in Clare, SW Ireland, and Raeburn Flow, a deposit on the Solway Firth, S Scotland.

 For biological data we look at plant macrofossils, using the Quadrat & Leaf Count technique as well as Testate amoebae specimen counts. As geochemical proxies we investigate the distribution of lithogenic versus marine derived elements as well as anthropogenic elements. Chronologies are based on 14C and 210Pb dating.

 

The first results for Tyndrain show that the botanical and geochemical fen-bog transition are located at different depths in the profile. The geochemical transition is distinctively higher up. We can however, pick up a big shift in all proxies around ~2800 cal BP. This coincides well with a wetshift recognisable in numerous deposits all over the world.

As for the desired correlations, we have contradicting results. However, it is possible to see some matching peaks for the various proxies in terms of wetshifts and droughts throughout the profile. An important factor influencing the distribution of lithogenic elements and their interpretation is land use.

 Our palaeoclimate reconstructions for the Tyndrain raised bog deposit show that analysing just one proxy may mask changes in bog surface wetness. However, combining biological and geochemical data can improve insight as well as raise more questions. It is therefore crucial to conduct more studies to determine consistent patterns.

Furthermore, one important denouement is that even within relatively short distances there can be high intrasite variability within peat bog ecosystems.

Anke Küttner, Dmitri Mauqouy, Tim Mighall, Eva Krupp, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Improving arsenopyrite oxidation rate laws: implications for arsenic mobilization during aquifer storage and recovery (ASR) 2018-04-25

    Abstract

    Aquifer storage and recovery (ASR) and aquifer recharge (AR) provide technical solutions to address water supply deficits and growing future water demands. Unfortunately, the mobilization of naturally present arsenic due to ASR/AR operations has undermined its application on a larger scale. Predicting arsenic mobility in the subsurface during ASR/AR is further complicated by site-specific factors, including the arsenic mobilization mechanisms, groundwater flow conditions, and multi-phase geochemical interactions. In order to ensure safe and sustainable ASR/AR operation, a better understanding of these factors is needed. The current study thus aims to better characterize and model arsenic remobilization at ASR/AR sites by compiling and analyzing available kinetic data on arsenic mobilization from arsenopyrite under different aqueous conditions. More robust and widely applicable rate laws are developed for geochemical conditions relevant to ASR/AR. Sensitivity analysis of these new rate laws gives further insight into the controlling geochemical factors for arsenic mobilization. When improved rate laws are incorporated as the inputs for reactive transport modeling, arsenic mobilization in ASR/AR operations can be predicted with an improved accuracy. The outcomes will be used to guide groundwater monitoring and specify ASR/AR operational parameters, including water pretreatment requirements prior to injection.

  • Heavy metal exposure has adverse effects on the growth and development of preschool children 2018-04-25

    Abstract

    The purpose of this study was to investigate the associations between levels of lead (Pb), cadmium (Cd), chromium (Cr), and manganese (Mn) in the PM2.5 and blood and physical growth, and development parameters including birth length and weight, height, weight, body mass index (BMI), head circumference, and chest circumference in preschool children from Guiyu (e-waste exposure area) and Haojiang (the reference area). A total of 470 preschool children from Guiyu and Haojiang located in southeast coast of China were recruited and required to undergo physical examination and blood tests during the study period. Birth length and weight were obtained by birth records and questionnaire. Pb and Cd in both PM2.5 and blood were significantly higher in Guiyu than Haojiang. Remarkably, the children of Guiyu had significantly lower birth weight and length, BMI, and chest circumference when compare to their peers from the reference area (all p value < 0.05). Spearman correlation analyses showed that blood Pb was negatively correlated with height (r = −0.130, p < 0.001), weight (r = −0.169, p < 0.001), BMI (r = −0.100, p < 0.05), head circumference (r = −0.095, p < 0.05), and chest circumference (r = −0.112, p < 0.05). After adjustment for the potential confounders in further linear regression analyses, blood Pb was negatively associated with height (β = −0.066, p < 0.05), weight (β = −0.119, p < 0.001), head circumference (β = −0.123, p < 0.01), and chest circumference (β = −0.104, p < 0.05), respectively. No significant association between blood Cd, Cr, or Mn was found with any of our developmental outcomes. Taken together, lead exposure limits or delays the growth and development of preschool children.

  • Contamination characteristics of trace metals in dust from different levels of roads of a heavily air-polluted city in north China 2018-04-24

    Abstract

    Concentrations of eight trace metals (TMs) in road dust (RD) (particles < 25 μm) from urban areas of Xinxiang, China, were determined by inductively coupled plasma mass spectrometry. The geometric mean concentrations of Zn, Mn, Pb, As, Cu, Cr, Ni and Cd were 489, 350, 114, 101, 60.0, 39.7, 31.6, and 5.1 mg kg−1, respectively. When compared with TM levels in background soil, the samples generally display elevated TM concentrations, except for Cr and Mn, and for Cd the enrichment value was 69.6. Spatial variations indicated TMs in RD from park path would have similar sources with main roads, collector streets and bypasses. Average daily exposure doses of the studied TMs were about three orders of magnitude higher for hand-to-mouth ingestion than dermal contact, and the exposure doses for children were 9.33 times higher than that for adults. The decreasing trend of calculated hazard indexes (HI) for the eight elements was As > Pb > Cr > Mn > Cd > Zn > Ni > Cu for both children and adults.