SEGH Articles

Notes from Malawi

07 November 2012
Plant and crop selenium concentration shows strong geochemical control, and our data suggests widespread high prevalence of dietary Se deficiency across Malawi, primarily due to the low pH of the predominant soil types causing Se to be held in an unavailable form.

 As previously documented on this website 

(http://segh.net/articles/Ecosystem_services_to_alleviate_micronutrient_malnutrition_in_Sub_Saharan_Africa/), the British Geological Survey (BGS), the University of Nottingham (UoN) and the Malawian Ministry of Agriculture are working to improve 

understanding of mineral intake levels in Malawi and explore options for addressing deficiencies. Plant and crop selenium (Se) concentration shows strong geochemical control, and our data suggests widespread high prevalence of dietary Se deficiency across Malawi, primarily due to the low pH of the predominant soil types which causes Se to be held in an unavailable form.

Selenium is only required in very small quantities – the daily dietary requirement for the whole population of Africa is around 50kg. One option would be to supplement fertilisers with tiny amounts of Se, a policy that was adopted in Finland in the 1980s. Our field trials in Malawi have shown this to be potentially effective in raising maize grain Se levels (Chillimba et al. 2011). Wider testing is now required considering the variety of cropping systems found around the country, and that many farmers are unable to afford fertiliser.Malawian Ministry of Agriculture are working to improve the understanding of mineral intake levels in Malawi and explore options for addressing deficiencies. Plant and crop selenium (Se) concentration shows strong geochemical control, and our data suggests widespread high prevalence of dietary Se deficiency across Malawi, primarily due to the low pH of the predominant soil types which causes Se to be held in an unavailable form.

Another option is liming, which I will be testing with maize field trials this year at three locations in central and northern Malawi.  By increasing soil pH, liming has the potential to improve Se availability and hence increase plant uptake.  Liming might also provide economic benefits to farmers. A BGS-led study in Zambia (FarmLime) showed that liming rates around 0.5-1 tonne per hectare can increase maize and groundnut yields, with a positive cost-benefit ratio. However, the affordability and availability of lime depends greatly on proximity to the lime source, and many farmers struggle to afford inputs due to lack of credit. In addition, we expect that improvements in grain Se content might only be seen at much higher levels of liming.

Finally, we are exploring options for meeting dietary requirements of Se (and many other minerals, including calcium, iodine and zinc) through dietary diversification. In order to help inform this study, I have been busy collecting food samples from around Malawi which will be shipped back to the UK and analysed at BGS and UoN for mineral content. At this time of year, near the end of the dry season, most households are relying on grain stocks from May’s harvest. This means maize for most, although pearl millet and sorghum are preferred in the Shire valley in the south due to their drought tolerance. Grain is generally milled at local mills and boiled in water to prepare a thick porridge, which is accompanied by a “relish” of boiled leaves, beans, or sometimes fish from Lake Malawi. Most households collect vegetable leaves during the rainy season (including pumpkin leaves, bean leaves and the leaves of many different indigenous vegetables such as “chisoso” and “tove”), with some cooked fresh and some sun-dried in order to have supplies through the dry season. For all food samples collected, we also take a coupled soil sample. This will help to identify the influence of soil geochemistry on crop mineral content.

The planting rains are due soon, working their way up from the south, and farmers are busy preparing their maize ridges with hand hoes. It’s an exciting time of year, though slightly nail-biting as planting too early or too late can lead to crop failure. Farmers around Mzuzu where I am staying have found climate change, especially unpredictable rainfall patterns, a major challenge in recent years. Their anecdotal evidence of a warming climate and shorter rains fits with empirical data (http://mtc-m17.sid.inpe.br/col/sid.inpe.br/mtc-m17@80/2006/11.27.17.33/doc/Coelho.Evidence.pdf ).

 
 
All our fieldwork is done through the Malawi Ministry of Agriculture. As well as the obvious advantages garnered through local knowledge, contacts and resources, the setup also provides a route for information dissemination through the agricultural extension offices, a major source of support for most farmers.

Conducting research in Malawi does throw up some logistical difficulties, such as the fairly frequent fuel shortages. But in a country where the majority of people are involved in agriculture, mainly for subsistence, and where many households are just one poor harvest away from hunger, agricultural research can greatly help farmers through provision of information. Particularly in a subsistence context and given Malawi’s health and nutrition indicators (such as almost half children under five years of age are medically classed as “wasted”, and almost half non-pregnant women aged 15-49 are anaemic), agricultural policy and interventions need to aim for nutritional benefits, not just focus on yields.

Edward Joy

University of Nottingham – British Geological Survey – Ministry of Agriculture, Malawi.

Chilimba, A.D.C., Young, S.D., Black, C.R., Ander, E.L., Watts, M.J., Lammel, J. and Broadley, M.R. 2011. Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi, Scientific Reports, 1, 1 - 9. http://www.nature.com/srep/2011/110823/srep00072/full/srep00072.html

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Geophagy among East African Chimpanzees: consumed soils provide protection from plant secondary compounds and bioavailable iron 2019-12-01

    Abstract

    Geophagy, the intentional consumption of earth materials, has been recorded in humans and other animals. It has been hypothesized that geophagy is an adaptive behavior, and that clay minerals commonly found in eaten soil can provide protection from toxins and/or supplement micronutrients. To test these hypotheses, we monitored chimpanzee geophagy using camera traps in four permanent sites at the Budongo Forest Reserve, Uganda, from October 2015–October 2016. We also collected plants, and soil chimpanzees were observed eating. We analyzed 10 plant and 45 soil samples to characterize geophagic behavior and geophagic soil and determine (1) whether micronutrients are available from the soil under physiological conditions and if iron is bioavailable, (2) the concentration of phenolic compounds in plants, and (3) if consumed soils are able to adsorb these phenolics. Chimpanzees ate soil and drank clay-infused water containing 1:1 and 2:1 clay minerals and > 30% sand. Under physiological conditions, the soils released calcium, iron, and magnesium. In vitro Caco-2 experiments found that five times more iron was bioavailable from three of four soil samples found at the base of trees. Plant samples contained approximately 60 μg/mg gallic acid equivalent. Soil from one site contained 10 times more 2:1 clay minerals, which were better at removing phenolics present in their diet. We suggest that geophagy may provide bioavailable iron and protection from phenolics, which have increased in plants over the last 20 years. In summary, geophagy within the Sonso community is multifunctional and may be an important self-medicative behavior.

  • Accumulation of uranium and heavy metals in the soil–plant system in Xiazhuang uranium ore field, Guangdong Province, China 2019-12-01

    Abstract

    Plants that have grown for many years in the special environmental conditions prevailing in mining areas are naturally screened and show strong capacity to adapt to their environment. The present study investigated the enrichment characteristics of U and other heavy metals (As, Cu, Pb, Mn, Mo, Zn, Cd, Co, and Ni) in the soil–plant system in Xiazhuang uranium mine. Four dominant plants (Castanopsis carlesii, Rhus chinensis, Liriodendron chinense, and Sapium discolor) and soil samples were collected from the mined areas, unmined areas, and background areas away from the ore field. U, As, Cu, Pb, Mn, Mo, Zn, Cd, Co, and Ni concentrations were analyzed by ICP-MS. The results demonstrate that (1) The highest concentrations of U (4.1–206.9 mg/kg) and Pb (43.3–126.0 mg/kg) with the geoaccumulation index (Igeo) greater than 1 show that they are the main soil pollutants in the research area. (2) The biological accumulation coefficient (LBAC) values for Cd, Mn, and Cu are greater than zero in S. discolor, L. chinense, and C. carlesii and these three plants indicate that they can be used for remediation of the soil in the ore field. (3) R. chinensis inhibits the accumulation of heavy metals and shows sensitive pigment responses to the accumulation of U in the leaves. L. chinense has the strongest enrichment effect on heavy metals but exhibits weak biochemical responses under U stress. C. carlesii demonstrates strong adaptation to U and can maintain healthy pigment characteristics in case of high U enrichment. (4) S. discolor, L. chinense, C. carlesii and R. chinensis have strong tolerance to U toxicity and different biochemical responses.

  • Distribution, sources and health risk assessment of contaminations in water of urban park: A case study in Northeast China 2019-12-01

    Abstract

    This case study was performed to determine whether the pollutants in water of urban park could bring health risk to human engaging in water-related activities such as swimming and provide evidence demonstrating the critical need for strengthened recreational water resources management of urban park. TN, NH4+-N, TP, Cu, Mn, Zn, Se, Pb, As, Cd and Cr(VI) contents were determined to describe the spatial distribution of contaminations; sources apportionment with the method of correlation analysis, factor analysis and cluster analysis were followed by health risk assessment for swimmers of different age groups. The results reveal that element contents in all sites do not exceed Chinese standard for swimming area and European Commission standard for surface water; all detected elements except Cr(VI) have a tendency to accumulate in the location of lake crossing bridge; Mn and Zn are considered to have the same pollution source including geogenic and anthropogenic sources by multivariable analysis. Carcinogenic risks of different age groups descend in the same order with non-carcinogenic risks. Among all elements, Zn and Mn contribute the lowest non-carcinogenic risk (5.1940E-06) and the highest non-carcinogenic risk (7.9921E-04) through skin contact pathway, respectively. The total average personal risk for swimmers in swimming area is 1.9693E-03, and this site is not suitable for swimming. Overall, it is possible that swimmers are exposed to risk via the dermal route when carrying out water-related activities, it is recommended that necessary precautions and management should be taken in other similar locations around the world.