SEGH Articles

Notes from Malawi

07 November 2012
Plant and crop selenium concentration shows strong geochemical control, and our data suggests widespread high prevalence of dietary Se deficiency across Malawi, primarily due to the low pH of the predominant soil types causing Se to be held in an unavailable form.

 As previously documented on this website 

(, the British Geological Survey (BGS), the University of Nottingham (UoN) and the Malawian Ministry of Agriculture are working to improve 

understanding of mineral intake levels in Malawi and explore options for addressing deficiencies. Plant and crop selenium (Se) concentration shows strong geochemical control, and our data suggests widespread high prevalence of dietary Se deficiency across Malawi, primarily due to the low pH of the predominant soil types which causes Se to be held in an unavailable form.

Selenium is only required in very small quantities – the daily dietary requirement for the whole population of Africa is around 50kg. One option would be to supplement fertilisers with tiny amounts of Se, a policy that was adopted in Finland in the 1980s. Our field trials in Malawi have shown this to be potentially effective in raising maize grain Se levels (Chillimba et al. 2011). Wider testing is now required considering the variety of cropping systems found around the country, and that many farmers are unable to afford fertiliser.Malawian Ministry of Agriculture are working to improve the understanding of mineral intake levels in Malawi and explore options for addressing deficiencies. Plant and crop selenium (Se) concentration shows strong geochemical control, and our data suggests widespread high prevalence of dietary Se deficiency across Malawi, primarily due to the low pH of the predominant soil types which causes Se to be held in an unavailable form.

Another option is liming, which I will be testing with maize field trials this year at three locations in central and northern Malawi.  By increasing soil pH, liming has the potential to improve Se availability and hence increase plant uptake.  Liming might also provide economic benefits to farmers. A BGS-led study in Zambia (FarmLime) showed that liming rates around 0.5-1 tonne per hectare can increase maize and groundnut yields, with a positive cost-benefit ratio. However, the affordability and availability of lime depends greatly on proximity to the lime source, and many farmers struggle to afford inputs due to lack of credit. In addition, we expect that improvements in grain Se content might only be seen at much higher levels of liming.

Finally, we are exploring options for meeting dietary requirements of Se (and many other minerals, including calcium, iodine and zinc) through dietary diversification. In order to help inform this study, I have been busy collecting food samples from around Malawi which will be shipped back to the UK and analysed at BGS and UoN for mineral content. At this time of year, near the end of the dry season, most households are relying on grain stocks from May’s harvest. This means maize for most, although pearl millet and sorghum are preferred in the Shire valley in the south due to their drought tolerance. Grain is generally milled at local mills and boiled in water to prepare a thick porridge, which is accompanied by a “relish” of boiled leaves, beans, or sometimes fish from Lake Malawi. Most households collect vegetable leaves during the rainy season (including pumpkin leaves, bean leaves and the leaves of many different indigenous vegetables such as “chisoso” and “tove”), with some cooked fresh and some sun-dried in order to have supplies through the dry season. For all food samples collected, we also take a coupled soil sample. This will help to identify the influence of soil geochemistry on crop mineral content.

The planting rains are due soon, working their way up from the south, and farmers are busy preparing their maize ridges with hand hoes. It’s an exciting time of year, though slightly nail-biting as planting too early or too late can lead to crop failure. Farmers around Mzuzu where I am staying have found climate change, especially unpredictable rainfall patterns, a major challenge in recent years. Their anecdotal evidence of a warming climate and shorter rains fits with empirical data ( ).

All our fieldwork is done through the Malawi Ministry of Agriculture. As well as the obvious advantages garnered through local knowledge, contacts and resources, the setup also provides a route for information dissemination through the agricultural extension offices, a major source of support for most farmers.

Conducting research in Malawi does throw up some logistical difficulties, such as the fairly frequent fuel shortages. But in a country where the majority of people are involved in agriculture, mainly for subsistence, and where many households are just one poor harvest away from hunger, agricultural research can greatly help farmers through provision of information. Particularly in a subsistence context and given Malawi’s health and nutrition indicators (such as almost half children under five years of age are medically classed as “wasted”, and almost half non-pregnant women aged 15-49 are anaemic), agricultural policy and interventions need to aim for nutritional benefits, not just focus on yields.

Edward Joy

University of Nottingham – British Geological Survey – Ministry of Agriculture, Malawi.

Chilimba, A.D.C., Young, S.D., Black, C.R., Ander, E.L., Watts, M.J., Lammel, J. and Broadley, M.R. 2011. Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi, Scientific Reports, 1, 1 - 9.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil 2017-04-19


    A 30-day incubation experiment was conducted using a heavy metal-contaminated mined soil amended with date palm feedstock (FS) and its derivative biochars (BCs) at three pyrolysis temperatures of 300 (BC-300), 500 (BC-500), and 700 °C (BC-700) with different application rates (0.0, 5, 15, and 30 g kg−1) to investigate their short-term effects on soil respiration (CO2–C efflux), microbial biomass carbon (MBC), soil organic carbon (SOC), mobile fraction of heavy metals (Cd, Cu, Pb, Zn, Mn, and Fe), pH, and electrical conductivity (EC). The results showed that FS and BC-300 with increasing addition rate significantly reduced soil pH, whereas SOC, CO2–C efflux, and soil MBC were increased compared to the control. On the contrary, BC-500 and BC-700 increased soil pH at early stage of incubation and have small or no effects on SOC, CO2–C efflux, and MBC. Based on the results, the date palm biochars exhibited much lower cumulative CO2–C efflux than feedstock, even with low-temperature biochar, indicating that BCs have C sequestration potential. Applying BC-700 at 15 and 30 g kg−1 significantly reduced cumulative CO2–C efflux by 21.8 and 45.4% compared to the control, respectively. The incorporation of FS into contaminated soil significantly increased the mobile content of Cd and Mn, but decreased the mobile content of Cu. However, BC-300 significantly reduced the mobile content of Cd, Cu, Pb, and Zn. It could be concluded that low-temperature biochar could be used as a soil amendment for reducing heavy metal mobility in mining contaminated soil in addition to minimize soil CO2–C efflux.

  • Historical record of anthropogenic polycyclic aromatic hydrocarbons in a lake sediment from the southern Tibetan Plateau 2017-04-17


    High-altitude lake sediments can be used as natural archives to reconstruct the history of pollutants. In this work, the temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was determined in a sediment core collected from the southern Tibetan Plateau (TP), which was dated by using the 210Pb dating method and validated with the 137Cs fallout peak. The concentrations of the anthropogenic PAHs (Σ8PAH) in the sediment core ranged from 0.83 to 12 ng/g dw, and the fluxes of the Σ8PAH were in the range of 2.1–27 g/cm2/year. The temporal variations in the concentration and input flux of anthropogenic PAHs were low with little variability before the 1950s, and then gradually increased from the 1950s to the 1980s, and an accelerated increase was observed after the early 1980s. The content of total organic carbon played an insignificant role in affecting the time trends of PAHs in the sediment core. Diagnostic concentration fractions of PAH components indicate PAHs in the lake sediment of the southern TP which are mainly from biomass burning and/or from long-range atmospheric transport.

  • Determination of the potential implementation impact of 2016 ministry of environmental protection generic assessment criteria for potentially contaminated sites in China 2017-04-12


    The Ministry of Environmental Protection of China issued a 3rd draft edition of risk-based Generic Assessment Criteria (the MEP-GAC) in March 2016. Since these will be the first authoritative GAC in China, their implementation is likely to have a significant impact on China’s growing contaminated land management sector. This study aims to determine the potential implementation impact of the MEP-GAC through an in-depth analysis of the management context, land use scenarios, health criteria values adopted and exposure pathways considered. The MEP-GAC have been proposed for two broad categories of land use scenarios for contaminated land risk assessment, and these two categories of land use scenarios need to be further delved, and a MEP-GAC for Chinese cultivated land scenario ought to be developed, to ensure human health protection of Chinese farmers. The MEP-GAC have adopted 10−6 as the acceptable lifetime cancer risk, given the widespread extent and severe level of land contamination in China, consideration should be given to the decision on excess lifetime cancer risk of 10−5. During risk assessment process in practice, it is better to review the 20% TDI against local circumstances to determine their suitability before adopting it. The MEP-GAC are based on a SOM value of 1%, for regions with particularly high SOM, it might be necessary to develop regional GAC, due to SOM’s significant impact on the GAC developed. An authoritative risk assessment model developed based on HJ25.3-2014 would help facilitate the DQRA process in practice. The MEP-GAC could better reflect the likely exposures of China’s citizens due to vapour inhalation by using characteristics of Chinese exposure scenarios, including China-generic building stock, as inputs into the Johnson and Ettinger model as opposed to adoption of the US EPA parameters. The MEP-GAC once implemented will set the trajectory for the development of the investigation, assessment and remediation of land contamination for years.