SEGH Articles

Notes from Malawi

07 November 2012
Plant and crop selenium concentration shows strong geochemical control, and our data suggests widespread high prevalence of dietary Se deficiency across Malawi, primarily due to the low pH of the predominant soil types causing Se to be held in an unavailable form.

 As previously documented on this website 

(http://segh.net/articles/Ecosystem_services_to_alleviate_micronutrient_malnutrition_in_Sub_Saharan_Africa/), the British Geological Survey (BGS), the University of Nottingham (UoN) and the Malawian Ministry of Agriculture are working to improve 

understanding of mineral intake levels in Malawi and explore options for addressing deficiencies. Plant and crop selenium (Se) concentration shows strong geochemical control, and our data suggests widespread high prevalence of dietary Se deficiency across Malawi, primarily due to the low pH of the predominant soil types which causes Se to be held in an unavailable form.

Selenium is only required in very small quantities – the daily dietary requirement for the whole population of Africa is around 50kg. One option would be to supplement fertilisers with tiny amounts of Se, a policy that was adopted in Finland in the 1980s. Our field trials in Malawi have shown this to be potentially effective in raising maize grain Se levels (Chillimba et al. 2011). Wider testing is now required considering the variety of cropping systems found around the country, and that many farmers are unable to afford fertiliser.Malawian Ministry of Agriculture are working to improve the understanding of mineral intake levels in Malawi and explore options for addressing deficiencies. Plant and crop selenium (Se) concentration shows strong geochemical control, and our data suggests widespread high prevalence of dietary Se deficiency across Malawi, primarily due to the low pH of the predominant soil types which causes Se to be held in an unavailable form.

Another option is liming, which I will be testing with maize field trials this year at three locations in central and northern Malawi.  By increasing soil pH, liming has the potential to improve Se availability and hence increase plant uptake.  Liming might also provide economic benefits to farmers. A BGS-led study in Zambia (FarmLime) showed that liming rates around 0.5-1 tonne per hectare can increase maize and groundnut yields, with a positive cost-benefit ratio. However, the affordability and availability of lime depends greatly on proximity to the lime source, and many farmers struggle to afford inputs due to lack of credit. In addition, we expect that improvements in grain Se content might only be seen at much higher levels of liming.

Finally, we are exploring options for meeting dietary requirements of Se (and many other minerals, including calcium, iodine and zinc) through dietary diversification. In order to help inform this study, I have been busy collecting food samples from around Malawi which will be shipped back to the UK and analysed at BGS and UoN for mineral content. At this time of year, near the end of the dry season, most households are relying on grain stocks from May’s harvest. This means maize for most, although pearl millet and sorghum are preferred in the Shire valley in the south due to their drought tolerance. Grain is generally milled at local mills and boiled in water to prepare a thick porridge, which is accompanied by a “relish” of boiled leaves, beans, or sometimes fish from Lake Malawi. Most households collect vegetable leaves during the rainy season (including pumpkin leaves, bean leaves and the leaves of many different indigenous vegetables such as “chisoso” and “tove”), with some cooked fresh and some sun-dried in order to have supplies through the dry season. For all food samples collected, we also take a coupled soil sample. This will help to identify the influence of soil geochemistry on crop mineral content.

The planting rains are due soon, working their way up from the south, and farmers are busy preparing their maize ridges with hand hoes. It’s an exciting time of year, though slightly nail-biting as planting too early or too late can lead to crop failure. Farmers around Mzuzu where I am staying have found climate change, especially unpredictable rainfall patterns, a major challenge in recent years. Their anecdotal evidence of a warming climate and shorter rains fits with empirical data (http://mtc-m17.sid.inpe.br/col/sid.inpe.br/mtc-m17@80/2006/11.27.17.33/doc/Coelho.Evidence.pdf ).

 
 
All our fieldwork is done through the Malawi Ministry of Agriculture. As well as the obvious advantages garnered through local knowledge, contacts and resources, the setup also provides a route for information dissemination through the agricultural extension offices, a major source of support for most farmers.

Conducting research in Malawi does throw up some logistical difficulties, such as the fairly frequent fuel shortages. But in a country where the majority of people are involved in agriculture, mainly for subsistence, and where many households are just one poor harvest away from hunger, agricultural research can greatly help farmers through provision of information. Particularly in a subsistence context and given Malawi’s health and nutrition indicators (such as almost half children under five years of age are medically classed as “wasted”, and almost half non-pregnant women aged 15-49 are anaemic), agricultural policy and interventions need to aim for nutritional benefits, not just focus on yields.

Edward Joy

University of Nottingham – British Geological Survey – Ministry of Agriculture, Malawi.

Chilimba, A.D.C., Young, S.D., Black, C.R., Ander, E.L., Watts, M.J., Lammel, J. and Broadley, M.R. 2011. Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi, Scientific Reports, 1, 1 - 9. http://www.nature.com/srep/2011/110823/srep00072/full/srep00072.html

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Ecological impact of the antibiotic ciprofloxacin on microbial community of aerobic activated sludge 2019-08-16

    Abstract

    This study investigated the effects and fate of the antibiotic ciprofloxacin (CIP) at environmentally relevant levels (50–500 µg/L) in activated sludge (AS) microbial communities under aerobic conditions. Exposure to 500 µg/L of CIP decreased species diversity by about 20% and significantly altered the phylogenetic structure of AS communities compared to those of control communities (no CIP exposure), while there were no significant changes upon exposure to 50 µg/L of CIP. Analysis of community composition revealed that exposure to 500 µg/L of CIP significantly reduced the relative abundance of Rhodobacteraceae and Nakamurellaceae by more than tenfold. These species frequently occur in AS communities across many full-scale wastewater treatment plants and are involved in key ecosystem functions (i.e., organic matter and nitrogen removal). Our analyses showed that 50–500 µg/L CIP was poorly removed in AS (about 20% removal), implying that the majority of CIP from AS processes may be released with either their effluents or waste sludge. We therefore strongly recommend further research on CIP residuals and/or post-treatment processes (e.g., anaerobic digestion) for waste streams that may cause ecological risks in receiving water bodies.

  • Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: a high density sampling survey in the Parauapebas basin, Brazilian Amazon 2019-08-10

    Abstract

    A high-density regional-scale soil geochemical survey comprising 727 samples (one sample per each 5 × 5 km grid) was carried out in the Parauapebas sub-basin of the Brazilian Amazonia, under the Itacaiúnas Basin Geochemical Mapping and Background Project. Samples were taken from two depths at each site: surface soil, 0–20 cm and deep soil, 30–50 cm. The ground and sieved (< 75 µm) fraction was digested using aqua regia and analyzed for 51 elements by inductively coupled plasma mass spectrometry (ICPMS). All data were used here, but the principal focus was on the potential toxic elements (PTEs) and Fe and Mn to evaluate the spatial distribution patterns and to establish their geochemical background concentrations in soils. Geochemical maps as well as principal component analysis (PCA) show that the distribution patterns of the elements are very similar between surface and deep soils. The PCA, applied on clr-transformed data, identified four major associations: Fe–Ti–V–Sc–Cu–Cr–Ni (Gp-1); Zr–Hf–U–Nb–Th–Al–P–Mo–Ga (Gp-2); K–Na–Ca–Mg–Ba–Rb–Sr (Gp-3); and La–Ce–Co–Mn–Y–Zn–Cd (Gp-4). Moreover, the distribution patterns of elements varied significantly among the three major geological domains. The whole data indicate a strong imprint of local geological setting in the geochemical associations and point to a dominant geogenic origin for the analyzed elements. Copper and Fe in Gp-1 were enriched in the Carajás basin and are associated with metavolcanic rocks and banded-iron formations, respectively. However, the spatial distribution of Cu is also highly influenced by two hydrothermal mineralized copper belts. Ni–Cr in Gp-1 are highly correlated and spatially associated with mafic and ultramafic units. The Gp-2 is partially composed of high field strength elements (Zr, Hf, Nb, U, Th) that could be linked to occurrences of A-type Neoarchean granites. The Gp-3 elements are mobile elements which are commonly found in feldspars and other rock-forming minerals being liberated by chemical weathering. The background threshold values (BTV) were estimated separately for surface and deep soils using different methods. The ‘75th percentile’, which commonly used for the estimation of the quality reference values (QRVs) following the Brazilian regulation, gave more restrictive or conservative (low) BTVs, while the ‘MMAD’ was more realistic to define high BTVs that can better represent the so-called mineralized/normal background. Compared with CONAMA Resolution (No. 420/2009), the conservative BTVs of most of the toxic elements were below the prevention limits (PV), except Cu, but when the high BTVs are considered, Cu, Co, Cr and Ni exceeded the PV limits. The degree of contamination (Cdeg), based on the conservative BTVs, indicates low contamination, except in the Carajás basin, which shows many anomalies and had high contamination mainly from Cu, Cr and Ni, but this is similar between surface and deep soils indicating that the observed high anomalies are strictly related to geogenic control. This is supported when the Cdeg is calculated using the high BTVs, which indicates low contamination. This suggests that the use of only conservative BTVs for the entire region might overestimate the significance of anthropogenic contamination; thus, we suggest the use of high BTVs for effective assessment of soil contamination in this region. The methodology and results of this study may help developing strategies for geochemical mapping in other Carajás soils or in other Amazonian soils with similar characteristics.

  • Uptake of Cd, Pb, and Ni by Origanum syriacum produced in Lebanon 2019-08-06

    Abstract

    Trace metals are found naturally in soil. However, the increase in industrial and agricultural polluting activities has increased trace metal contamination and raised high concerns in the public health sector. The study was conducted on Origanum syriacum, one of the most consumed herbs in the Middle East, and was divided into three parts. (1) Pot experiment: to study the effect of Cd, Pb, or Ni levels in soil on their uptake by O. syriacum. (2) Field samples: collected from major agricultural regions in Lebanon to analyze Cd, Pb, and Ni concentrations in soil and leaves. (3) Sale outlets samples: to measure the levels of Cd, Pb, and Ni in O. syriacum tissues in the market. Results showed that there was a positive correlation between levels of Cd, Pb, and Ni in soil and those in O. syriacum tissues. None of the field samples contained Pb or Ni that exceeded the maximum allowable limits (MAL). Three samples collected from heavily poultry-manured soil contained Cd higher than the MAL. Samples collected from sale outlets did not exceed the MAL for Ni but two exceeded the MAL for Cd and one for Pb. Trace metal contamination is not a major concern in O. syriacum produced in Lebanon. Only one mixture sample from a sale outlet was higher in Pb than the MAL and three samples from heavily manured fields exceeded the MAL for Cd.