SEGH Articles

Notes from Malawi

07 November 2012
Plant and crop selenium concentration shows strong geochemical control, and our data suggests widespread high prevalence of dietary Se deficiency across Malawi, primarily due to the low pH of the predominant soil types causing Se to be held in an unavailable form.

 As previously documented on this website 

(http://segh.net/articles/Ecosystem_services_to_alleviate_micronutrient_malnutrition_in_Sub_Saharan_Africa/), the British Geological Survey (BGS), the University of Nottingham (UoN) and the Malawian Ministry of Agriculture are working to improve 

understanding of mineral intake levels in Malawi and explore options for addressing deficiencies. Plant and crop selenium (Se) concentration shows strong geochemical control, and our data suggests widespread high prevalence of dietary Se deficiency across Malawi, primarily due to the low pH of the predominant soil types which causes Se to be held in an unavailable form.

Selenium is only required in very small quantities – the daily dietary requirement for the whole population of Africa is around 50kg. One option would be to supplement fertilisers with tiny amounts of Se, a policy that was adopted in Finland in the 1980s. Our field trials in Malawi have shown this to be potentially effective in raising maize grain Se levels (Chillimba et al. 2011). Wider testing is now required considering the variety of cropping systems found around the country, and that many farmers are unable to afford fertiliser.Malawian Ministry of Agriculture are working to improve the understanding of mineral intake levels in Malawi and explore options for addressing deficiencies. Plant and crop selenium (Se) concentration shows strong geochemical control, and our data suggests widespread high prevalence of dietary Se deficiency across Malawi, primarily due to the low pH of the predominant soil types which causes Se to be held in an unavailable form.

Another option is liming, which I will be testing with maize field trials this year at three locations in central and northern Malawi.  By increasing soil pH, liming has the potential to improve Se availability and hence increase plant uptake.  Liming might also provide economic benefits to farmers. A BGS-led study in Zambia (FarmLime) showed that liming rates around 0.5-1 tonne per hectare can increase maize and groundnut yields, with a positive cost-benefit ratio. However, the affordability and availability of lime depends greatly on proximity to the lime source, and many farmers struggle to afford inputs due to lack of credit. In addition, we expect that improvements in grain Se content might only be seen at much higher levels of liming.

Finally, we are exploring options for meeting dietary requirements of Se (and many other minerals, including calcium, iodine and zinc) through dietary diversification. In order to help inform this study, I have been busy collecting food samples from around Malawi which will be shipped back to the UK and analysed at BGS and UoN for mineral content. At this time of year, near the end of the dry season, most households are relying on grain stocks from May’s harvest. This means maize for most, although pearl millet and sorghum are preferred in the Shire valley in the south due to their drought tolerance. Grain is generally milled at local mills and boiled in water to prepare a thick porridge, which is accompanied by a “relish” of boiled leaves, beans, or sometimes fish from Lake Malawi. Most households collect vegetable leaves during the rainy season (including pumpkin leaves, bean leaves and the leaves of many different indigenous vegetables such as “chisoso” and “tove”), with some cooked fresh and some sun-dried in order to have supplies through the dry season. For all food samples collected, we also take a coupled soil sample. This will help to identify the influence of soil geochemistry on crop mineral content.

The planting rains are due soon, working their way up from the south, and farmers are busy preparing their maize ridges with hand hoes. It’s an exciting time of year, though slightly nail-biting as planting too early or too late can lead to crop failure. Farmers around Mzuzu where I am staying have found climate change, especially unpredictable rainfall patterns, a major challenge in recent years. Their anecdotal evidence of a warming climate and shorter rains fits with empirical data (http://mtc-m17.sid.inpe.br/col/sid.inpe.br/mtc-m17@80/2006/11.27.17.33/doc/Coelho.Evidence.pdf ).

 
 
All our fieldwork is done through the Malawi Ministry of Agriculture. As well as the obvious advantages garnered through local knowledge, contacts and resources, the setup also provides a route for information dissemination through the agricultural extension offices, a major source of support for most farmers.

Conducting research in Malawi does throw up some logistical difficulties, such as the fairly frequent fuel shortages. But in a country where the majority of people are involved in agriculture, mainly for subsistence, and where many households are just one poor harvest away from hunger, agricultural research can greatly help farmers through provision of information. Particularly in a subsistence context and given Malawi’s health and nutrition indicators (such as almost half children under five years of age are medically classed as “wasted”, and almost half non-pregnant women aged 15-49 are anaemic), agricultural policy and interventions need to aim for nutritional benefits, not just focus on yields.

Edward Joy

University of Nottingham – British Geological Survey – Ministry of Agriculture, Malawi.

Chilimba, A.D.C., Young, S.D., Black, C.R., Ander, E.L., Watts, M.J., Lammel, J. and Broadley, M.R. 2011. Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi, Scientific Reports, 1, 1 - 9. http://www.nature.com/srep/2011/110823/srep00072/full/srep00072.html

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Genotoxic effects of PM 10 and PM 2.5 bound metals: metal bioaccessibility, free radical generation, and role of iron 2018-10-09

    Abstract

    The present study was undertaken to examine the possible genotoxicity of ambient particulate matter (PM10 and PM2.5) in Pune city. In both size fractions of PM, Fe was found to be the dominant metal by concentration, contributing 22% and 30% to the total mass of metals in PM10 and PM2.5, respectively. The speciation of soluble Fe in PM10 and PM2.5 was investigated. The average fraction of Fe3+ and Fe2+ concentrations in PM2.5 was 80.6% and 19.3%, respectively, while in PM2.5 this fraction was 71.1% and 29.9%, respectively. The dominance of Fe(III) state in both PM fractions facilitates the generation of hydroxyl radicals (·OH), which can damage deoxyribose nucleic acid (DNA), as was evident from the gel electrophoresis study. The DNA damage by ·OH was supported through the in silico density functional theory (DFT) method. DFT results showed that C8 site of guanine (G)/adenine (A) and C6 site of thymine (T)/cytosine (C) would be energetically more favorable for the attack of hydroxyl radicals, when compared with the C4 and C5 sites. The non-standard Watson–Crick base pairing models of oxidative products of G, A, T and C yield lower-energy conformations than canonical dA:dT and dG:dC base pairing. This study may pave the way to understand the structural consequences of base-mediated oxidative lesions in DNA and its role in human diseases.

  • A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment 2018-10-08

    Abstract

    Airborne particulate matter (PM) that is a heterogeneous mixture of particles with a variety of chemical components and physical features acts as a potential risk to human health. The ability to pose health risk depends upon the size, concentration and chemical composition of the suspended particles. Potential toxic elements (PTEs) associated with PM have multiple sources of origin, and each source has the ability to generate multiple particulate PTEs. In urban areas, automobile, industrial emissions, construction and demolition activities are the major anthropogenic sources of pollution. Fine particles associated with PTEs have the ability to penetrate deep into respiratory system resulting in an increasing range of adverse health effects, at ever-lower concentrations. In-depth investigation of PTEs content and mode of occurrence in PM is important from both environmental and pathological point of view. Considering this air pollution risk, several studies had addressed the issues related to these pollutants in road and street dust, indicating high pollution level than the air quality guidelines. Observed from the literature, particulate PTEs pollution can lead to respiratory symptoms, cardiovascular problems, lungs cancer, reduced lungs function, asthma and severe case mortality. Due to the important role of PM and associated PTEs, detailed knowledge of their impacts on human health is of key importance.

  • Interactions between polycyclic aromatic hydrocarbons and epoxide hydrolase 1 play roles in asthma 2018-10-06

    Abstract

    Asthma, as one of the most common chronic diseases in children and adults, is a consequence of complex gene–environment interactions. Polycyclic aromatic hydrocarbons (PAHs), as a group of widespread environmental organic pollutants, are involved in the development, triggering and pathologic changes of asthma. Various previous studies reported the critical roles of PAHs in immune changes, oxidative stress and environment–gene interactions of asthma. EPHX1 (the gene of epoxide hydrolase 1, an enzyme mediating human PAH metabolism) had a possible association with asthma by influencing PAH metabolism. This review summarized that (1) the roles of PAHs in asthma—work as risk factors; (2) the possible mechanisms involved in PAH-related asthma—through immunologic and oxidative stress changes; (3) the interactions between PAHs and EPHX1 involved in asthma—enzymatic activity of epoxide hydrolase 1, which affected by EPHX1 genotypes/SNPs/diplotypes, could influence human PAH metabolism and people’s vulnerability to PAH exposure. This review provided a better understanding of the above interactions and underlying mechanisms for asthma which help to raise public’s concern on PAH control and develop strategies for individual asthma primary prevention.