SEGH Articles

Otoliths: The little “White” box recorders of the fish world

01 February 2013
The use of fish otolith (ear bone) microchemistry has enabled scientists understand better fish migratory patterns and stock identification


Andy Marriott is in his final year studying for a PhD in the use of biogeochemical tags (primarily otoliths) to determine the origins and movement patterns of fishes. This NERC-funded research project at Bangor University, North Wales is supervised by Dr. Ian McCarthy and Prof. Chris Richardson of the School of Ocean Sciences at Bangor University, Dr Simon Chenery at the British Geological Survey and Dr Mike Armstrong (Case partner) from the Centre for Environment, Fisheries and Aquaculture Science.


Since graduating from Bangor University in 2007 where Andy studied the population biology of the red gurnard (Chelidonichthys cuculus) in inshore waters of Eastern Anglesey his interest in fish otoliths, or ear stones as they are more commonly known, has grown. Otoliths are paired calcified structures, situated in semi-circular canals either side of the brain and are used by the fish as auditory and/or balance organs. Their use as indicators in identifying the age of fish has been well documented with the first observations of otolith growth increments “annuli” by Reibisch in 1899. These annuli grow throughout the life of the fish creating banding patterns and can be a reliable way of estimating daily, weekly, monthly and yearly growth patterns. However, it is their use as an environmental recorder and biogeochemical tag which has accelerated the use of these metabolically inert structures during the last decade. The use of otolith microchemistry has enabled scientists to get a better understanding of fish migratory patterns, stock identification and the detection of Diadromy (fish moving between fresh and marine waters) with the reconstruction of temperature and salinity histories.

Variations observed in the chemical composition of fish otoliths, such as changes in trace elements incorporated within the otolith matrix, has enabled the discrimination between the life histories of fish species which spend some part of their life residing in water bodies which differ in their chemical composition. For example, moving between marine and freshwater (in either direction), or moving between bodies of water in either the marine or freshwater environment with distinct (natural or anthropogenic) water chemistry. These elemental tags may provide valuable information on movement patterns of larval and juvenile fish, may enable the identification of distinct “groups” of fish based on spawning or nursery location and allow the study of connectivity and habitat utilisation in fish populations.

Working with the BGS, one part of Andy’s PhD project has been to examine whether otolith microchemistry can be used to identify the rivers of origin of juvenile brown trout parr (Salmo trutta) collected from 36 rivers in NW England, Wales, Isle of Man, SW Scotland and the east coast of Ireland which drain into the Irish Sea. The ultimate aim of this research being to determine whether river- or region-specific chemical tags exist in the otoliths which may be used to identify sea-caught sea trout (the form of S. trutta that migrates to sea to feed) back to their region or river of origin.

Otoliths removed from trout parr have been analysed using solution-based inductively-coupled plasma mass spectrometry (sb-ICP-MS) to measure the element: Ca ratios of Mg, Mn, Sr and Ba and data analyses are currently underway to determine whether these biogeochemical tags can be used to classify the trout parr back to source. Relating the otolith chemical tag in a given catchment to the underlying geological bedrock formations and water chemistry may also assist in our understanding of why the trout parr are being classified back to particular locations. “Otoliths may be acting as little “white box recorders” of the entire life history of the fish with the differences in ambient water and various environmental conditions experienced by the fish all stored within the calcified structures. The exciting bit is trying to untangle the secrets held within the otoliths to tell us the life story of that fish”.


Future work involving the analysis of otoliths collected from adult sea trout may allow the identification of those adults back to their regions (or even rivers) of origin using the chemical tags identified in the juvenile trout parr. The validity of using trace elements as biogeochemical tags found within fish otoliths of brown trout parr may also assist in future conservation and management planning for this species.

Andy Marriott, 

Nuffield Fish Laboratory, Bangor University, UK.




Marriott, A. L., Latchford, J. W. and McCarthy, I. D. 2010. Population biology of the red gurnard (Aspitrigla cuculus L.; Triglidae) in the inshore waters of Eastern Anglesey and Northwest Wales. Journal of Applied Ichthyology. 26, 504-512.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Ecological impact of the antibiotic ciprofloxacin on microbial community of aerobic activated sludge 2019-08-16


    This study investigated the effects and fate of the antibiotic ciprofloxacin (CIP) at environmentally relevant levels (50–500 µg/L) in activated sludge (AS) microbial communities under aerobic conditions. Exposure to 500 µg/L of CIP decreased species diversity by about 20% and significantly altered the phylogenetic structure of AS communities compared to those of control communities (no CIP exposure), while there were no significant changes upon exposure to 50 µg/L of CIP. Analysis of community composition revealed that exposure to 500 µg/L of CIP significantly reduced the relative abundance of Rhodobacteraceae and Nakamurellaceae by more than tenfold. These species frequently occur in AS communities across many full-scale wastewater treatment plants and are involved in key ecosystem functions (i.e., organic matter and nitrogen removal). Our analyses showed that 50–500 µg/L CIP was poorly removed in AS (about 20% removal), implying that the majority of CIP from AS processes may be released with either their effluents or waste sludge. We therefore strongly recommend further research on CIP residuals and/or post-treatment processes (e.g., anaerobic digestion) for waste streams that may cause ecological risks in receiving water bodies.

  • Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: a high density sampling survey in the Parauapebas basin, Brazilian Amazon 2019-08-10


    A high-density regional-scale soil geochemical survey comprising 727 samples (one sample per each 5 × 5 km grid) was carried out in the Parauapebas sub-basin of the Brazilian Amazonia, under the Itacaiúnas Basin Geochemical Mapping and Background Project. Samples were taken from two depths at each site: surface soil, 0–20 cm and deep soil, 30–50 cm. The ground and sieved (< 75 µm) fraction was digested using aqua regia and analyzed for 51 elements by inductively coupled plasma mass spectrometry (ICPMS). All data were used here, but the principal focus was on the potential toxic elements (PTEs) and Fe and Mn to evaluate the spatial distribution patterns and to establish their geochemical background concentrations in soils. Geochemical maps as well as principal component analysis (PCA) show that the distribution patterns of the elements are very similar between surface and deep soils. The PCA, applied on clr-transformed data, identified four major associations: Fe–Ti–V–Sc–Cu–Cr–Ni (Gp-1); Zr–Hf–U–Nb–Th–Al–P–Mo–Ga (Gp-2); K–Na–Ca–Mg–Ba–Rb–Sr (Gp-3); and La–Ce–Co–Mn–Y–Zn–Cd (Gp-4). Moreover, the distribution patterns of elements varied significantly among the three major geological domains. The whole data indicate a strong imprint of local geological setting in the geochemical associations and point to a dominant geogenic origin for the analyzed elements. Copper and Fe in Gp-1 were enriched in the Carajás basin and are associated with metavolcanic rocks and banded-iron formations, respectively. However, the spatial distribution of Cu is also highly influenced by two hydrothermal mineralized copper belts. Ni–Cr in Gp-1 are highly correlated and spatially associated with mafic and ultramafic units. The Gp-2 is partially composed of high field strength elements (Zr, Hf, Nb, U, Th) that could be linked to occurrences of A-type Neoarchean granites. The Gp-3 elements are mobile elements which are commonly found in feldspars and other rock-forming minerals being liberated by chemical weathering. The background threshold values (BTV) were estimated separately for surface and deep soils using different methods. The ‘75th percentile’, which commonly used for the estimation of the quality reference values (QRVs) following the Brazilian regulation, gave more restrictive or conservative (low) BTVs, while the ‘MMAD’ was more realistic to define high BTVs that can better represent the so-called mineralized/normal background. Compared with CONAMA Resolution (No. 420/2009), the conservative BTVs of most of the toxic elements were below the prevention limits (PV), except Cu, but when the high BTVs are considered, Cu, Co, Cr and Ni exceeded the PV limits. The degree of contamination (Cdeg), based on the conservative BTVs, indicates low contamination, except in the Carajás basin, which shows many anomalies and had high contamination mainly from Cu, Cr and Ni, but this is similar between surface and deep soils indicating that the observed high anomalies are strictly related to geogenic control. This is supported when the Cdeg is calculated using the high BTVs, which indicates low contamination. This suggests that the use of only conservative BTVs for the entire region might overestimate the significance of anthropogenic contamination; thus, we suggest the use of high BTVs for effective assessment of soil contamination in this region. The methodology and results of this study may help developing strategies for geochemical mapping in other Carajás soils or in other Amazonian soils with similar characteristics.

  • Uptake of Cd, Pb, and Ni by Origanum syriacum produced in Lebanon 2019-08-06


    Trace metals are found naturally in soil. However, the increase in industrial and agricultural polluting activities has increased trace metal contamination and raised high concerns in the public health sector. The study was conducted on Origanum syriacum, one of the most consumed herbs in the Middle East, and was divided into three parts. (1) Pot experiment: to study the effect of Cd, Pb, or Ni levels in soil on their uptake by O. syriacum. (2) Field samples: collected from major agricultural regions in Lebanon to analyze Cd, Pb, and Ni concentrations in soil and leaves. (3) Sale outlets samples: to measure the levels of Cd, Pb, and Ni in O. syriacum tissues in the market. Results showed that there was a positive correlation between levels of Cd, Pb, and Ni in soil and those in O. syriacum tissues. None of the field samples contained Pb or Ni that exceeded the maximum allowable limits (MAL). Three samples collected from heavily poultry-manured soil contained Cd higher than the MAL. Samples collected from sale outlets did not exceed the MAL for Ni but two exceeded the MAL for Cd and one for Pb. Trace metal contamination is not a major concern in O. syriacum produced in Lebanon. Only one mixture sample from a sale outlet was higher in Pb than the MAL and three samples from heavily manured fields exceeded the MAL for Cd.