SEGH Articles

Ozone as a remediation technique for the treatment of hydrocarbons in post industrial sites in Glasgow

01 November 2011
Andrew Robson was a runner up for the Springer / Hemphill Best student Oral presentation at SEGH 2011.


This project was aimed at proving the viability for the use of ozone as a remediation technology for a contaminated site located on the West Coast of Scotland.  While there are plenty of documented laboratory based studies on the use of ozone for the treatment of contaminated land, there are few real world examples documented from the UK and even less looking at the particular environmental factors encountered on the West Coast of Scotland. 

The site used for this study was a coastal site, the soil predominately clay based although towards the coastal edge it is infilled. Previously the site was used as an oil refinery but has now been identified for redevelopment for housing, offices and parkland. Previous usage has left the site heavily contaminated with a range of Polyaromatic Hydrocarbons (PAH), Alkenes and heavy metals, all of which have the potential to cause serious health issues if left untreated when the site is redeveloped, some of the contaminants have been linked to developmental issues in children, as well as a range of potential carcinogenic compounds. 

The study treated samples from the site with Ozone over a range of times and then measured the concentration of selected marker Polyaromatic hydrocarbons to identify the impact of the ozone on these to confirm that the Ozone had the ability to breakdown the PAH's.  Over time it was shown that all of these compounds showed a reduction in concentration with ozone treatment, although the degree of degradation varied between the different marker compounds.

The Ozone had no direct impact on the levels of the heavy metals, but has the potential to oxidise to less toxic oxidation states. An unexpected finding identified by the study was the impact the ozone had on the physical nature of the predominantly clay based soil. The ozone has had the affect of driving the water content from the clay as well as reducing the hydrocarbon content and in the samples a 12% reduction of soil volume was seen in a 6 hour application.  The engineering implications of this for the redevelopment of a treated clay site being the need for additional top soil as well as a re-evaluation of the geophysical properties of the treated material.

Andrew Robson is a MRes student studying at the David Livingstone Centre for Sustainability, at the University of Strathclyde, and is sponsored by Parsons Brinckerhoff under a industry sponsorship scheme .


The Study is a joint project with industry involving two partners, Parsons Brinckerhoff,  who as well as sponsoring the Masters course also offer industrial knowledge and advice to the project and ERS Land Regeneration who have allowed access to the  site and to their laboratory facilities and have helped out with some of the more practical challenges.

Andrew Robson1, Christine Switzer1, Jamie Robinson2 , Thomas Asprey3 ,Helen Keenan1

1DLCS, Department of Civil Engineering, University of Strathclyde

2Parsons Brinckerhoff, Queen Victoria House, Bristol BS6 6US

3 ERS Land Regeneration  Westerhill Road , Bishopbriggs, Glasgow. G64 2QH   


Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil 2017-04-19


    A 30-day incubation experiment was conducted using a heavy metal-contaminated mined soil amended with date palm feedstock (FS) and its derivative biochars (BCs) at three pyrolysis temperatures of 300 (BC-300), 500 (BC-500), and 700 °C (BC-700) with different application rates (0.0, 5, 15, and 30 g kg−1) to investigate their short-term effects on soil respiration (CO2–C efflux), microbial biomass carbon (MBC), soil organic carbon (SOC), mobile fraction of heavy metals (Cd, Cu, Pb, Zn, Mn, and Fe), pH, and electrical conductivity (EC). The results showed that FS and BC-300 with increasing addition rate significantly reduced soil pH, whereas SOC, CO2–C efflux, and soil MBC were increased compared to the control. On the contrary, BC-500 and BC-700 increased soil pH at early stage of incubation and have small or no effects on SOC, CO2–C efflux, and MBC. Based on the results, the date palm biochars exhibited much lower cumulative CO2–C efflux than feedstock, even with low-temperature biochar, indicating that BCs have C sequestration potential. Applying BC-700 at 15 and 30 g kg−1 significantly reduced cumulative CO2–C efflux by 21.8 and 45.4% compared to the control, respectively. The incorporation of FS into contaminated soil significantly increased the mobile content of Cd and Mn, but decreased the mobile content of Cu. However, BC-300 significantly reduced the mobile content of Cd, Cu, Pb, and Zn. It could be concluded that low-temperature biochar could be used as a soil amendment for reducing heavy metal mobility in mining contaminated soil in addition to minimize soil CO2–C efflux.

  • Historical record of anthropogenic polycyclic aromatic hydrocarbons in a lake sediment from the southern Tibetan Plateau 2017-04-17


    High-altitude lake sediments can be used as natural archives to reconstruct the history of pollutants. In this work, the temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was determined in a sediment core collected from the southern Tibetan Plateau (TP), which was dated by using the 210Pb dating method and validated with the 137Cs fallout peak. The concentrations of the anthropogenic PAHs (Σ8PAH) in the sediment core ranged from 0.83 to 12 ng/g dw, and the fluxes of the Σ8PAH were in the range of 2.1–27 g/cm2/year. The temporal variations in the concentration and input flux of anthropogenic PAHs were low with little variability before the 1950s, and then gradually increased from the 1950s to the 1980s, and an accelerated increase was observed after the early 1980s. The content of total organic carbon played an insignificant role in affecting the time trends of PAHs in the sediment core. Diagnostic concentration fractions of PAH components indicate PAHs in the lake sediment of the southern TP which are mainly from biomass burning and/or from long-range atmospheric transport.

  • Determination of the potential implementation impact of 2016 ministry of environmental protection generic assessment criteria for potentially contaminated sites in China 2017-04-12


    The Ministry of Environmental Protection of China issued a 3rd draft edition of risk-based Generic Assessment Criteria (the MEP-GAC) in March 2016. Since these will be the first authoritative GAC in China, their implementation is likely to have a significant impact on China’s growing contaminated land management sector. This study aims to determine the potential implementation impact of the MEP-GAC through an in-depth analysis of the management context, land use scenarios, health criteria values adopted and exposure pathways considered. The MEP-GAC have been proposed for two broad categories of land use scenarios for contaminated land risk assessment, and these two categories of land use scenarios need to be further delved, and a MEP-GAC for Chinese cultivated land scenario ought to be developed, to ensure human health protection of Chinese farmers. The MEP-GAC have adopted 10−6 as the acceptable lifetime cancer risk, given the widespread extent and severe level of land contamination in China, consideration should be given to the decision on excess lifetime cancer risk of 10−5. During risk assessment process in practice, it is better to review the 20% TDI against local circumstances to determine their suitability before adopting it. The MEP-GAC are based on a SOM value of 1%, for regions with particularly high SOM, it might be necessary to develop regional GAC, due to SOM’s significant impact on the GAC developed. An authoritative risk assessment model developed based on HJ25.3-2014 would help facilitate the DQRA process in practice. The MEP-GAC could better reflect the likely exposures of China’s citizens due to vapour inhalation by using characteristics of Chinese exposure scenarios, including China-generic building stock, as inputs into the Johnson and Ettinger model as opposed to adoption of the US EPA parameters. The MEP-GAC once implemented will set the trajectory for the development of the investigation, assessment and remediation of land contamination for years.