SEGH Articles

Ozone as a remediation technique for the treatment of hydrocarbons in post industrial sites in Glasgow

01 November 2011
Andrew Robson was a runner up for the Springer / Hemphill Best student Oral presentation at SEGH 2011.


This project was aimed at proving the viability for the use of ozone as a remediation technology for a contaminated site located on the West Coast of Scotland.  While there are plenty of documented laboratory based studies on the use of ozone for the treatment of contaminated land, there are few real world examples documented from the UK and even less looking at the particular environmental factors encountered on the West Coast of Scotland. 

The site used for this study was a coastal site, the soil predominately clay based although towards the coastal edge it is infilled. Previously the site was used as an oil refinery but has now been identified for redevelopment for housing, offices and parkland. Previous usage has left the site heavily contaminated with a range of Polyaromatic Hydrocarbons (PAH), Alkenes and heavy metals, all of which have the potential to cause serious health issues if left untreated when the site is redeveloped, some of the contaminants have been linked to developmental issues in children, as well as a range of potential carcinogenic compounds. 

The study treated samples from the site with Ozone over a range of times and then measured the concentration of selected marker Polyaromatic hydrocarbons to identify the impact of the ozone on these to confirm that the Ozone had the ability to breakdown the PAH's.  Over time it was shown that all of these compounds showed a reduction in concentration with ozone treatment, although the degree of degradation varied between the different marker compounds.

The Ozone had no direct impact on the levels of the heavy metals, but has the potential to oxidise to less toxic oxidation states. An unexpected finding identified by the study was the impact the ozone had on the physical nature of the predominantly clay based soil. The ozone has had the affect of driving the water content from the clay as well as reducing the hydrocarbon content and in the samples a 12% reduction of soil volume was seen in a 6 hour application.  The engineering implications of this for the redevelopment of a treated clay site being the need for additional top soil as well as a re-evaluation of the geophysical properties of the treated material.

Andrew Robson is a MRes student studying at the David Livingstone Centre for Sustainability, at the University of Strathclyde, and is sponsored by Parsons Brinckerhoff under a industry sponsorship scheme .


The Study is a joint project with industry involving two partners, Parsons Brinckerhoff,  who as well as sponsoring the Masters course also offer industrial knowledge and advice to the project and ERS Land Regeneration who have allowed access to the  site and to their laboratory facilities and have helped out with some of the more practical challenges.

Andrew Robson1, Christine Switzer1, Jamie Robinson2 , Thomas Asprey3 ,Helen Keenan1

1DLCS, Department of Civil Engineering, University of Strathclyde

2Parsons Brinckerhoff, Queen Victoria House, Bristol BS6 6US

3 ERS Land Regeneration  Westerhill Road , Bishopbriggs, Glasgow. G64 2QH   


Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt 2020-01-23


    The steady increase in the world’s population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.

    Graphic abstract

  • Plasticizers and bisphenol A in Adyar and Cooum riverine sediments, India: occurrences, sources and risk assessment 2020-01-23


    Adyar and Cooum, the two rivers intersecting Chennai city, are exposed to serious pollution due to the release of large quantities of dumped waste, untreated wastewater and sewage. Sediments can act as repository for emerging organic contaminants. Hence, we have monitored the occurrence and risk associated with plasticizers [six phthalic acid esters (PAEs), bis(2-ethyl hexyl adipate) (DEHA)] and bisphenol A (BPA) in surface riverine sediments of Adyar and Cooum rivers from residential/commercial, industrial and electronic waste recycling sites. Σ7plasticizers (PAEs + DEHA) in the Adyar riverine sediment (ARS) and Cooum riverine sediment (CRS) varied between 51.82–1796 and 28.13–856 ng/g, respectively. More than three-fourth of Σ7plasticizers came from bis(2-ethylhexyl) phthalate (DEHP), in accordance with the high production and usage of this compound. BPA varied between 10.70–2026 and 7.58–1398 ng/g in ARS and CRS, respectively. Average concentrations of plasticizers and BPA were four times higher in electronic waste (e-waste) recycling sites when compared with industrial and residential/commercial sites. BPA and DEHP showed a strong and significant correlation (R2 = 0.7; p < 0.01) in the e-waste sites thereby indicating common source types. Sites present at close proximity to raw sewage pumping stations contributed to 70% of the total BPA observed in this study. For the derived pore water concentration of plasticizers and BPA, the ecotoxicological risk has been found to be higher in ARS over CRS. However, sediment concentrations in all the sites of ARS and CRS were much below the recommended serious risk concentration for human (SRChuman) and serious risk concentration for ecotoxicological (SRCeco).

  • Distribution of metal(loid)s in particle size fraction in urban soil and street dust: influence of population density 2020-01-18


    Assessment of street dust is an invaluable approach for monitoring atmospheric pollution. Little information is available on the size distribution of contaminants in street dusts and urban soils, and it is not known how the population density would influence them. This research was carried out to assess the size distribution of trace metal(loid)s in street dust and urban soil, and to understand how population density might influence the size-resolved concentration of metal(loid)s. Three urban areas with a high, medium and low population density and a natural area were selected and urban soil and street dust sampled. They were fractionated into 8 size fractions: 2000–850, 850–180, 180–106, 106–50, 50–20, 20–10, 10–2, and < 2 µm. The concentration of Pb, Zn, Cu, Cd, Cr, Ni, As, and Fe was determined, and enrichment factor and grain size fraction loadings were computed. The results indicated that the concentration of Pb, Zn, Cu, Cd, and Cr was highly size dependent, particularly for particles < 100 µm, especially for street dust. Low concentrations of Ni and As in street dust and urban soil were size and population density independent. Higher size dependency of the metals concentration and the higher degree of elemental enrichment in the street dust fractions than the urban soils indicate higher contribution of human-induced pollution to the dust. Findings also confirm the inevitability of size fractionation when soils or dusts are environmentally assessed, particularly in moderately to highly polluted areas. Otherwise, higher concentrations of certain pollutants in fine-sized particles might be overlooked leading to inappropriate decisions for environmental remediation.