SEGH Articles

Reducing human exposure to arsenic and simultaneously increasing selenium and zinc intake, by substituting non-aromatic rice with aromatic rice in the diet

01 May 2013
A team of scientists led by Dr Parvez Haris is carrying out research to identify ways of reducing human exposure to arsenic through diet

Rice is the staple food of over three billion people.  The rice plant is highly efficient at absorbing arsenic from soil and water, it is reported to be the highest arsenic-containing cereal.  For Bangladeshi’s, rice is their staple food and they consume on average half a kilogramme of rice per day.

A team of scientists led by Dr Parvez Haris from DeMontfort University, Leicester, UK is carrying out research to identify ways of reducing human exposure to arsenic through diet.

Haris and his team have already demonstrated that exposure to the more toxic inorganic arsenic species is greater in people who eat more rice.  In this latest work, published in Biomedical Spectroscopy and Imaging, the DeMontfort University team – along with Dr Michael Watts from the British Geological Survey, Keyworth, Nottingham, UK – has identified varieties that are low in arsenic but high in essential trace elements such as selenium and zinc.

Earlier studies showed high concentrations of arsenic in Bangladeshi rice, but the rice samples were mainly regions where the irrigation water contains higher levels of arsenic. The team carried out a detailed study on rice from the greater Sylhet region in the north-east of Bangladesh, which generally has a lower groundwater arsenic concentration. The team analysed 98 rice samples using a technique called Inductively Couple Plasma – Mass Spectromtetry (ICP-MS) to determine total arsenic and also arsenic species in a selected group of samples.

The results showed Sylheti rice to have a far lower arsenic concentration than similar types of rice form other regions of Bangladesh. Results also showed that the arsenic concentration in aromatic rice was 40% less than non-aromatic varieties and that it also contained higher concentrations of the essential elements selenium and zinc. This is very good news for millions of Bangladeshis who are exposed to high concentrations of arsenic through drinking water and rice and are also deficient in zinc and selenium. Several varieties of Sylheti aromatic rice even had lower arsenic than the well known Basmati aromatic rice from India and Pakistan.

For someone consuming 500 grams of non-aromatic or aromatic rice from Sylhet, the daily intake of arsenic from rice would be approximately 48% and 69% lower, respectively, compared with consuming no-aromatic rie from other parts of Bangladesh. Bangladeshis are proud of their diet and often refer to themselves as ‘mache bhathe Bangali’ which can be roughly translated as ‘fish and rice makes a Bengali’. The identification of rice with very low arsenic concentrations and higher concentrations of essential elements is good news for the Bangladeshis and other communities where rice is a staple food but it is important ot encourage a more diversified diet that is less dependent on rice.

Aromatic rice is generally cultivated during the wet (aman) season and therefore is less dependent on the use of groundwater for irrigation. It also requires less fertilizer and pesticides. Although the yield of aromatic rice is lower, the farmers will not need to spend much money on applying chemicals that could pollute the environment and harm their own health. Furthermore, energy costs (electricity or diesel) will be lower as there will be less need for them to pump groundwater for irrigation.

The impact of this finding may also have health implications for other groups of people who eat large quantities of rice daily. This type of rice could also be used in infant foods in stead of rice with higher arsenic concentrations. It could also benefit people suffering from celiac disease who consume rice-based foods on a regular basis. Therefore, it is essential that further research on aromatic rice from different parts of Bangladesh and other regions of the world are conducted.

Dr Parvez Haris, DeMontfort University

pharis@dmu.ac.uk

Reference

Shaban W. Al-Rmalli, Richard O. Jenkins, Michael J Watts, Parvez I. Haris, 2012. Reducing human exposure to arsenic and simultaneously increasing selenium and zinc intake, by substituting non-aromatic rice with aromatic rice in the diet. Watts and Parvez I. Haris. Biomedical Spectroscopy and Imaging Volume 1 / Issue 5. DOI: 1010.3233/BSI-120028.

Full text of the article has been made freely available at http://iospress.metapress.com/content/r81n381j34421481/fulltext.pdf

 

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Status, source identification, and health risks of potentially toxic element concentrations in road dust in a medium-sized city in a developing country 2017-09-19

    Abstract

    This study aims to determine the status of potentially toxic element concentrations of road dust in a medium-sized city (Rawang, Malaysia). This study adopts source identification via enrichment factor, Pearson correlation analysis, and Fourier spectral analysis to identify sources of potentially toxic element concentrations in road dust in Rawang City, Malaysia. Health risk assessment was conducted to determine potential health risks (carcinogenic and non-carcinogenic risks) among adults and children via multiple pathways (i.e., ingestion, dermal contact, and inhalation). Mean of potentially toxic element concentrations were found in the order of Pb > Zn > Cr(IV) > Cu > Ni > Cd > As > Co. Source identification revealed that Cu, Cd, Pb, Zn, Ni, and Cr(IV) are associated with anthropogenic sources in industrial and highly populated areas in northern and southern Rawang, cement factories in southern Rawang, as well as the rapid development and population growth in northwestern Rawang, which have resulted in high traffic congestion. Cobalt, Fe, and As are related to geological background and lithologies in Rawang. Pathway orders for both carcinogenic and non-carcinogenic risks are ingestion, dermal contact, and inhalation, involving adults and children. Non-carcinogenic health risks in adults were attributed to Cr(IV), Pb, and Cd, whereas Cu, Cd, Cr(IV), Pb, and Zn were found to have non-carcinogenic health risks for children. Cd, Cr(IV), Pb, and As may induce carcinogenic risks in adults and children, and the total lifetime cancer risk values exceeded incremental lifetime.

  • Erratum to: Preliminary assessment of surface soil lead concentrations in Melbourne, Australia 2017-09-11
  • In vivo uptake of iodine from a Fucus serratus Linnaeus seaweed bath: does volatile iodine contribute? 2017-09-02

    Abstract

    Seaweed baths containing Fucus serratus Linnaeus are a rich source of iodine which has the potential to increase the urinary iodide concentration (UIC) of the bather. In this study, the range of total iodine concentration in seawater (22–105 µg L−1) and seaweed baths (808–13,734 µg L−1) was measured over 1 year. The seasonal trend shows minimum levels in summer (May–July) and maximum in winter (November–January). The bathwater pH was found to be acidic, average pH 5.9 ± 0.3. An in vivo study with 30 volunteers was undertaken to measure the UIC of 15 bathers immersed in the bath and 15 non-bathers sitting adjacent to the bath. Their UIC was analysed pre- and post-seaweed bath and corrected for creatinine concentration. The corrected UIC of the population shows an increase following the seaweed bath from a pre-treatment median of 76 µg L−1 to a post-treatment median of 95 µg L−1. The pre-treatment UIC for both groups did not indicate significant difference (p = 0.479); however, the post-treatment UIC for both did (p = 0.015) where the median bather test UIC was 86 µg L−1 and the non-bather UIC test was 105 µg L−1. Results indicate the bath has the potential to increase the UIC by a significant amount and that inhalation of volatile iodine is a more significant contributor to UIC than previously documented.