SEGH Articles

Reducing human exposure to arsenic and simultaneously increasing selenium and zinc intake, by substituting non-aromatic rice with aromatic rice in the diet

01 May 2013
A team of scientists led by Dr Parvez Haris is carrying out research to identify ways of reducing human exposure to arsenic through diet

Rice is the staple food of over three billion people.  The rice plant is highly efficient at absorbing arsenic from soil and water, it is reported to be the highest arsenic-containing cereal.  For Bangladeshi’s, rice is their staple food and they consume on average half a kilogramme of rice per day.

A team of scientists led by Dr Parvez Haris from DeMontfort University, Leicester, UK is carrying out research to identify ways of reducing human exposure to arsenic through diet.

Haris and his team have already demonstrated that exposure to the more toxic inorganic arsenic species is greater in people who eat more rice.  In this latest work, published in Biomedical Spectroscopy and Imaging, the DeMontfort University team – along with Dr Michael Watts from the British Geological Survey, Keyworth, Nottingham, UK – has identified varieties that are low in arsenic but high in essential trace elements such as selenium and zinc.

Earlier studies showed high concentrations of arsenic in Bangladeshi rice, but the rice samples were mainly regions where the irrigation water contains higher levels of arsenic. The team carried out a detailed study on rice from the greater Sylhet region in the north-east of Bangladesh, which generally has a lower groundwater arsenic concentration. The team analysed 98 rice samples using a technique called Inductively Couple Plasma – Mass Spectromtetry (ICP-MS) to determine total arsenic and also arsenic species in a selected group of samples.

The results showed Sylheti rice to have a far lower arsenic concentration than similar types of rice form other regions of Bangladesh. Results also showed that the arsenic concentration in aromatic rice was 40% less than non-aromatic varieties and that it also contained higher concentrations of the essential elements selenium and zinc. This is very good news for millions of Bangladeshis who are exposed to high concentrations of arsenic through drinking water and rice and are also deficient in zinc and selenium. Several varieties of Sylheti aromatic rice even had lower arsenic than the well known Basmati aromatic rice from India and Pakistan.

For someone consuming 500 grams of non-aromatic or aromatic rice from Sylhet, the daily intake of arsenic from rice would be approximately 48% and 69% lower, respectively, compared with consuming no-aromatic rie from other parts of Bangladesh. Bangladeshis are proud of their diet and often refer to themselves as ‘mache bhathe Bangali’ which can be roughly translated as ‘fish and rice makes a Bengali’. The identification of rice with very low arsenic concentrations and higher concentrations of essential elements is good news for the Bangladeshis and other communities where rice is a staple food but it is important ot encourage a more diversified diet that is less dependent on rice.

Aromatic rice is generally cultivated during the wet (aman) season and therefore is less dependent on the use of groundwater for irrigation. It also requires less fertilizer and pesticides. Although the yield of aromatic rice is lower, the farmers will not need to spend much money on applying chemicals that could pollute the environment and harm their own health. Furthermore, energy costs (electricity or diesel) will be lower as there will be less need for them to pump groundwater for irrigation.

The impact of this finding may also have health implications for other groups of people who eat large quantities of rice daily. This type of rice could also be used in infant foods in stead of rice with higher arsenic concentrations. It could also benefit people suffering from celiac disease who consume rice-based foods on a regular basis. Therefore, it is essential that further research on aromatic rice from different parts of Bangladesh and other regions of the world are conducted.

Dr Parvez Haris, DeMontfort University

pharis@dmu.ac.uk

Reference

Shaban W. Al-Rmalli, Richard O. Jenkins, Michael J Watts, Parvez I. Haris, 2012. Reducing human exposure to arsenic and simultaneously increasing selenium and zinc intake, by substituting non-aromatic rice with aromatic rice in the diet. Watts and Parvez I. Haris. Biomedical Spectroscopy and Imaging Volume 1 / Issue 5. DOI: 1010.3233/BSI-120028.

Full text of the article has been made freely available at http://iospress.metapress.com/content/r81n381j34421481/fulltext.pdf

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Ecological impact of the antibiotic ciprofloxacin on microbial community of aerobic activated sludge 2019-08-16

    Abstract

    This study investigated the effects and fate of the antibiotic ciprofloxacin (CIP) at environmentally relevant levels (50–500 µg/L) in activated sludge (AS) microbial communities under aerobic conditions. Exposure to 500 µg/L of CIP decreased species diversity by about 20% and significantly altered the phylogenetic structure of AS communities compared to those of control communities (no CIP exposure), while there were no significant changes upon exposure to 50 µg/L of CIP. Analysis of community composition revealed that exposure to 500 µg/L of CIP significantly reduced the relative abundance of Rhodobacteraceae and Nakamurellaceae by more than tenfold. These species frequently occur in AS communities across many full-scale wastewater treatment plants and are involved in key ecosystem functions (i.e., organic matter and nitrogen removal). Our analyses showed that 50–500 µg/L CIP was poorly removed in AS (about 20% removal), implying that the majority of CIP from AS processes may be released with either their effluents or waste sludge. We therefore strongly recommend further research on CIP residuals and/or post-treatment processes (e.g., anaerobic digestion) for waste streams that may cause ecological risks in receiving water bodies.

  • Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: a high density sampling survey in the Parauapebas basin, Brazilian Amazon 2019-08-10

    Abstract

    A high-density regional-scale soil geochemical survey comprising 727 samples (one sample per each 5 × 5 km grid) was carried out in the Parauapebas sub-basin of the Brazilian Amazonia, under the Itacaiúnas Basin Geochemical Mapping and Background Project. Samples were taken from two depths at each site: surface soil, 0–20 cm and deep soil, 30–50 cm. The ground and sieved (< 75 µm) fraction was digested using aqua regia and analyzed for 51 elements by inductively coupled plasma mass spectrometry (ICPMS). All data were used here, but the principal focus was on the potential toxic elements (PTEs) and Fe and Mn to evaluate the spatial distribution patterns and to establish their geochemical background concentrations in soils. Geochemical maps as well as principal component analysis (PCA) show that the distribution patterns of the elements are very similar between surface and deep soils. The PCA, applied on clr-transformed data, identified four major associations: Fe–Ti–V–Sc–Cu–Cr–Ni (Gp-1); Zr–Hf–U–Nb–Th–Al–P–Mo–Ga (Gp-2); K–Na–Ca–Mg–Ba–Rb–Sr (Gp-3); and La–Ce–Co–Mn–Y–Zn–Cd (Gp-4). Moreover, the distribution patterns of elements varied significantly among the three major geological domains. The whole data indicate a strong imprint of local geological setting in the geochemical associations and point to a dominant geogenic origin for the analyzed elements. Copper and Fe in Gp-1 were enriched in the Carajás basin and are associated with metavolcanic rocks and banded-iron formations, respectively. However, the spatial distribution of Cu is also highly influenced by two hydrothermal mineralized copper belts. Ni–Cr in Gp-1 are highly correlated and spatially associated with mafic and ultramafic units. The Gp-2 is partially composed of high field strength elements (Zr, Hf, Nb, U, Th) that could be linked to occurrences of A-type Neoarchean granites. The Gp-3 elements are mobile elements which are commonly found in feldspars and other rock-forming minerals being liberated by chemical weathering. The background threshold values (BTV) were estimated separately for surface and deep soils using different methods. The ‘75th percentile’, which commonly used for the estimation of the quality reference values (QRVs) following the Brazilian regulation, gave more restrictive or conservative (low) BTVs, while the ‘MMAD’ was more realistic to define high BTVs that can better represent the so-called mineralized/normal background. Compared with CONAMA Resolution (No. 420/2009), the conservative BTVs of most of the toxic elements were below the prevention limits (PV), except Cu, but when the high BTVs are considered, Cu, Co, Cr and Ni exceeded the PV limits. The degree of contamination (Cdeg), based on the conservative BTVs, indicates low contamination, except in the Carajás basin, which shows many anomalies and had high contamination mainly from Cu, Cr and Ni, but this is similar between surface and deep soils indicating that the observed high anomalies are strictly related to geogenic control. This is supported when the Cdeg is calculated using the high BTVs, which indicates low contamination. This suggests that the use of only conservative BTVs for the entire region might overestimate the significance of anthropogenic contamination; thus, we suggest the use of high BTVs for effective assessment of soil contamination in this region. The methodology and results of this study may help developing strategies for geochemical mapping in other Carajás soils or in other Amazonian soils with similar characteristics.

  • Uptake of Cd, Pb, and Ni by Origanum syriacum produced in Lebanon 2019-08-06

    Abstract

    Trace metals are found naturally in soil. However, the increase in industrial and agricultural polluting activities has increased trace metal contamination and raised high concerns in the public health sector. The study was conducted on Origanum syriacum, one of the most consumed herbs in the Middle East, and was divided into three parts. (1) Pot experiment: to study the effect of Cd, Pb, or Ni levels in soil on their uptake by O. syriacum. (2) Field samples: collected from major agricultural regions in Lebanon to analyze Cd, Pb, and Ni concentrations in soil and leaves. (3) Sale outlets samples: to measure the levels of Cd, Pb, and Ni in O. syriacum tissues in the market. Results showed that there was a positive correlation between levels of Cd, Pb, and Ni in soil and those in O. syriacum tissues. None of the field samples contained Pb or Ni that exceeded the maximum allowable limits (MAL). Three samples collected from heavily poultry-manured soil contained Cd higher than the MAL. Samples collected from sale outlets did not exceed the MAL for Ni but two exceeded the MAL for Cd and one for Pb. Trace metal contamination is not a major concern in O. syriacum produced in Lebanon. Only one mixture sample from a sale outlet was higher in Pb than the MAL and three samples from heavily manured fields exceeded the MAL for Cd.