SEGH Articles

SEGH 2014

06 February 2014
Dr Jane Entwistle is Head of Department of Geography at Northumbria University and is organising the 2014 SEGH conference. Here she gives some insight into the host organisation and city.

The Department of Geography at Northumbria University are delighted to host the 2014 SEGH conference. The conference oral and poster sessions will run over 3 days (1st – 3rd July), with a pre-conference workshop (30th June) led by Dr Mark Cave and Dr Joanna Wragg of the British Geological Survey, and a post-conference excursion (4th July) taking in some of the sights the North East of England has to offer, including a stop on Hadrian’s Wall. For specific details of the conference programme, keynote and invited speakers please go to www.northumbria.ac.uk/segh2014.

Northumbria University, in Newcastle upon Tyne, is renowned for the excellence of its teaching, as well as its research. Based in the popular, safe and vibrant city of Newcastle upon Tyne, Northumbria offers you one of the best academic and social experiences possible. Newcastle is known for its lively nightlife and friendly inhabitants, and is home to the world famous Newcastle United premier league football club and its 'Toon Army' (St James's Park stadium is situated in the city centre, only a 10 minute stroll from the campus). Newcastle also has its own Chinatown, several art galleries and museums, and Antony Gormley's Angel of the North stands on a low hill next to the main A1 southern road approach to Newcastle. The city is steeped in history having originated as a Roman settlement on the banks of the River Tyne over 2000 years ago. Newcastle is also the gateway to the spectacular Northumberland Coast with its sandy beaches and stunning coastal castles.

The University itself was formed in 1969 from the amalgamation of three regional colleges and today is the largest university in the North East of England with a student population of around 33,000 from over 125 countries. The Department of Geography sits within one of four faculties, the Faculty of Engineering and Environment. Research in the Department focuses around three research groups, with strong synergies between these groups:

Cold and Palaeo Environments. Members of the group work in polar and high mountain environments addressing key problems in Earth Systems Science. Current research includes: glacier mass balance, ice/water/sediment interaction and ice sheet dynamics; slope and coastal cliff processes and large landslide deposits; palaeo-biogeography and palaeo-biome reconstruction for modelling past climates; fluvial processes in large Arctic river systems; environmental microbiology; and subglacial lakes, as part of the Lake Ellsworth Consortium.

Communities and Resilience. Members of the group work in diverse topics from the localism of community engagement and social inclusion to the internationalism of world city economics and disaster risk reduction across Africa and Asia. The group also hosts the Disasters and Development Network (DDN), which aims to develop through research, teaching and learning, the knowledge and skills to address hazards, disasters and complex emergencies from the perspective of different development debates and experience.

Environmental Geochemistry and Ecology. Research in this area is focused upon the sustainability of the physical, chemical and biological environment. There is a strong focus on the application of these fields to problems from the local to global scale. This approach is supported by the Northumbrian Environmental Training and Research Centre (NETREC), a dedicated research, consultancy and training unit that has been running since 1996. NETREC operates the North of England Air Quality in Major Incidents Service on behalf of the UK Environment Agency. Current research includes: environmental analysis to detect and model bioavailability and bioaccessibility of metals and other pollutants in the environment and the associated risks to human health; ecological resilience and climatic impacts on biodiversity; carbon capture and ecosystem services.

Recently refurbished laboratories provide facilities for environmental geochemistry and microbiology, in addition to a dedicated laboratory (including core storage, HF fume cupboard, micro-balance and microscope rooms) for palaeo-environmental research. Available instrumentation includes Inductively Coupled Plasma Atomic Emission Spectrometry; High Performance Liquid Chromatography; Gas Chromatography and Liquid Chromatography Mass Spectrometry; Scanning Electron Microscope with energy dispersive spectrometry; and a Flash 2000 organic elemental analyser. Over £0.5 million has been invested in field equipment including: terrestrial laser scanner with ~2km range; sub-bottom profiler for lakes and offshore surveys; portable XRF system; global positioning systems for precise point positioning; state-of-the-art unmanned aerial vehicles with high-resolution cameras for DEM generation and change detection; novel bespoke borehole radar equipment; ground-penetrating radar; seismic equipment; meteorological and air-monitoring equipment; and lake coring equipment.

We look forward to welcoming you to Newcastle and to Northumbria University and of course we will be happy to arrange a tour of the facilities during the conference.

Dr Jane Entwisle

Organiser of SEGH 2014

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Genotoxic effects of PM 10 and PM 2.5 bound metals: metal bioaccessibility, free radical generation, and role of iron 2018-10-09

    Abstract

    The present study was undertaken to examine the possible genotoxicity of ambient particulate matter (PM10 and PM2.5) in Pune city. In both size fractions of PM, Fe was found to be the dominant metal by concentration, contributing 22% and 30% to the total mass of metals in PM10 and PM2.5, respectively. The speciation of soluble Fe in PM10 and PM2.5 was investigated. The average fraction of Fe3+ and Fe2+ concentrations in PM2.5 was 80.6% and 19.3%, respectively, while in PM2.5 this fraction was 71.1% and 29.9%, respectively. The dominance of Fe(III) state in both PM fractions facilitates the generation of hydroxyl radicals (·OH), which can damage deoxyribose nucleic acid (DNA), as was evident from the gel electrophoresis study. The DNA damage by ·OH was supported through the in silico density functional theory (DFT) method. DFT results showed that C8 site of guanine (G)/adenine (A) and C6 site of thymine (T)/cytosine (C) would be energetically more favorable for the attack of hydroxyl radicals, when compared with the C4 and C5 sites. The non-standard Watson–Crick base pairing models of oxidative products of G, A, T and C yield lower-energy conformations than canonical dA:dT and dG:dC base pairing. This study may pave the way to understand the structural consequences of base-mediated oxidative lesions in DNA and its role in human diseases.

  • A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment 2018-10-08

    Abstract

    Airborne particulate matter (PM) that is a heterogeneous mixture of particles with a variety of chemical components and physical features acts as a potential risk to human health. The ability to pose health risk depends upon the size, concentration and chemical composition of the suspended particles. Potential toxic elements (PTEs) associated with PM have multiple sources of origin, and each source has the ability to generate multiple particulate PTEs. In urban areas, automobile, industrial emissions, construction and demolition activities are the major anthropogenic sources of pollution. Fine particles associated with PTEs have the ability to penetrate deep into respiratory system resulting in an increasing range of adverse health effects, at ever-lower concentrations. In-depth investigation of PTEs content and mode of occurrence in PM is important from both environmental and pathological point of view. Considering this air pollution risk, several studies had addressed the issues related to these pollutants in road and street dust, indicating high pollution level than the air quality guidelines. Observed from the literature, particulate PTEs pollution can lead to respiratory symptoms, cardiovascular problems, lungs cancer, reduced lungs function, asthma and severe case mortality. Due to the important role of PM and associated PTEs, detailed knowledge of their impacts on human health is of key importance.

  • Interactions between polycyclic aromatic hydrocarbons and epoxide hydrolase 1 play roles in asthma 2018-10-06

    Abstract

    Asthma, as one of the most common chronic diseases in children and adults, is a consequence of complex gene–environment interactions. Polycyclic aromatic hydrocarbons (PAHs), as a group of widespread environmental organic pollutants, are involved in the development, triggering and pathologic changes of asthma. Various previous studies reported the critical roles of PAHs in immune changes, oxidative stress and environment–gene interactions of asthma. EPHX1 (the gene of epoxide hydrolase 1, an enzyme mediating human PAH metabolism) had a possible association with asthma by influencing PAH metabolism. This review summarized that (1) the roles of PAHs in asthma—work as risk factors; (2) the possible mechanisms involved in PAH-related asthma—through immunologic and oxidative stress changes; (3) the interactions between PAHs and EPHX1 involved in asthma—enzymatic activity of epoxide hydrolase 1, which affected by EPHX1 genotypes/SNPs/diplotypes, could influence human PAH metabolism and people’s vulnerability to PAH exposure. This review provided a better understanding of the above interactions and underlying mechanisms for asthma which help to raise public’s concern on PAH control and develop strategies for individual asthma primary prevention.