SEGH Articles

SEGH 2014 Conference Report

08 September 2014
Northumbria University welcomed over 120 delegates from over 25 countries to SEGH 2014.


Northumbria University welcomed over 120 delegates from over 25 countries to SEGH2014. The meeting attracted delegates from across Europe, but also further afield from the USA, Mexico, Canada, Pakistan, Vietnam, Namibia and Nigeria, to hear the 51 papers and 40 posters presented. Human impacts on our atmosphere, lithosphere, biosphere and hydrosphere were discussed over the five days, with the linkages between human health and the environment a central focus.

In the opening session on ‘Air & Dust Pollution and Human Health’, Professor Frank Kelly (King’s College London), gave a timely and considered overview of the PM (particulate matter) burden to which populations are exposed and recent developments in evidence of how PM2.5 elicit health effects in humans. The subsequent session speakers considered how we detect, assess, model and practically tackle air pollution.

The session on ‘Environmental Iodine and the Deficiency Disorders’ generated a lively and stimulating set of papers and posters covering our current environmental knowledge and health perceptions, and highlighted ‘myths, misunderstandings and deficiencies’ along with further research needs.

As part of a special session on ‘Hydraulic fracturing (fracking) and health’ we heard a thought-provoking set of interlinked talks given by Professor Mike Stephenson (British Geological Survey), Professor Fred Worrall (Durham University), and Mr Robie Kamanyire (Public Health England). Current concerns raised in the media about the process of hydraulic fracturing were examined and discussed along with the potential public health impacts of exposures to chemical and radioactive pollutants as a result of shale gas extraction.

The central themes of risk, exposure assessment, bioavailability and bioaccessibility were explored over two days of sessions. Keynotes were given by Dr Frank Swartjes (National Institute of Public Health and the Environment (RIVM), Netherlands) and Professor Steven Sicilliano (University of Saskatchewan, Canada).  These talks, along with many of the session presenters, explored how the chemical and physical properties of soil influence the movement of pollutants from the environment into our bodies. Arsenic and Pb provided the main focus for a number of speakers, but Cd, Cu, Mg, Hg, V, along with Benzo[a]pyrene and a range of other PHEs, were also considered.   

The Conference Dinner, a Northumbrian-themed evening with local food and local music, took place in the Great Hall at Jesmond Dene House, and was attended by over 60 delegates. Photographs, taken by Ms Rosina Leonard, Geological Survey of Namibia, are available on line at Click here to view SEGH 2014

Thank you Rosina!

Finally, at the end of the week a few hardy (although they didn't realise this at the time!) delegates joined Mr Phil Hartley (Newcastle City Council) and Ms Lesley Dunlop (Northumbria University) to explore of the North-East’s industrial history and cultural heritage. However, after an amazing week of unusually good British ‘summer’ weather (yes sunshine and no rain on every day prior to the fieldtrip) our luck ran out.

Hadrian’s Wall at Cawfields. A stretch of Hadrian's Wall on a steep slope, with turrets and an impressive milecastle, probably built by the Second Legion.





But we donned hard hats, wellington boots and head torches to venture into Killhope lead mine. The mine owners hope everyone has now warmed up and dried out again! 

Killhope Lead Mine, Cowshill, Co. Durham

So just a final thank you to all who participated in SEGH 2014, and to the many new society members. Northumbria University looks forward to welcoming you to Newcastle again – but in the meantime we hope to see many of you in Bratislava in June 2015.  See for details.



by Jane Entwistle

(SEGH Chair 2014)

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Fate and partitioning of heavy metals in soils from landfill sites in Cape Town, South Africa: a health risk approach to data interpretation 2019-06-14


    The fate and persistence of trace metals in soils and sludge from landfill sites are crucial in determining the hazard posed by landfill, techniques for their restoration and potential reuse purposes of landfill sites after closure and restoration. A modified European Community Bureau of Reference’s (BCR) sequential extraction procedure was applied for partitioning and evaluating the mobility and persistence of trace metals (As, Cd, Cr, Cu, Ni, Pb, Sb, Se, Zn) in soils from three landfill sites and sludge sample from Cape Town, South Africa. Inductively coupled plasma optical emission spectroscopy was used to analyze BCR extracts. The mobility sequence based on the BCR mobile fraction showed that Cu (74–87%), Pb (65–80%), Zn (59–82%) and Cd (55–66%) constituted the mobile metals in the soils from the three sites. The mobility of Cu, Zn and Ni (> 95%) was particularly high in the sludge sample, which showed significant enrichment compared to the soil samples. Geo-accumulation index (Igeo) and risk assessment code were used to further assess the environmental risk of the metals in the soils. Exposure to the soils and sludge did not pose any non-cancer risks to adult and children as the hazard quotient and hazard index values were all below the safe level of 1. The cancer risks from Cd, Cr and Ni require that remedial action be considered during closure and restoration of the landfill sites.

  • An investigation into the use of < 38 µm fraction as a proxy for < 10 µm road dust particles 2019-06-13


    It is well documented that a large portion of urban particulate matters is derived from road dust. Isolating particles of RD which are small enough to be inhaled, however, is a difficult process. In this study, it is shown for the first time that the < 38 µm fraction of road dust particles can be used as a proxy for road dust particles < 10 µm in bioaccessibility studies. This study probed similarities between the < 10 and < 38µm fractions of urban road dust to show that the larger of the two can be used for analysis for which larger sample masses are required, as is the case with in vitro analysis. Road dust, initially segregated to size < 38 µm using sieves, was again size segregated to < 10 µm using water deposition. Both the original < 38 µm and the separated < 10 µm fractions were then subject to single particle analysis by SEM–EDX and bulk analysis by ICP-OES for its elemental composition. Dissolution tests in artificial lysosomal fluid, representative of lung fluid, were carried out on both samples to determine % bioaccessibility of selected potentially harmful elements and thus probe similarities/differences in in vitro behaviour between the two fractions. The separation technique achieved 94.3% of particles < 10 µm in terms of number of particles (the original sample contained 90.4% as determined by SEM–EDX). Acid-soluble metal concentration results indicated differences between the samples. However, when manipulated to negate the input of Si, SEM–EDX data showed general similarities in metal concentrations. Dissolution testing results indicated similar behaviour between the two samples in a simulated biological fluid.

  • Degradation of petroleum hydrocarbons in unsaturated soil and effects on subsequent biodegradation by potassium permanganate 2019-06-13


    To date, the oxidation of petroleum hydrocarbons using permanganate has been investigated rarely. Only a few studies on the remediation of unsaturated soil using permanganate can be found in the literature. This is, to the best of our knowledge, the first study conducted using permanganate pretreatment to degrade petroleum hydrocarbons in unsaturated soil in combination with subsequent bioaugmentation. The pretreatment of diesel-contaminated unsaturated soil with 0.5-pore-volume (5%) potassium permanganate (PP) by solution pouring and foam spraying (with a surfactant) achieved the total petroleum hydrocarbon (TPH) removal efficiencies of 37% and 72.1%, respectively. The PP foam, when coupled with bioaugmentation foam, further degraded the TPH to a final concentration of 438 mg/kg (92.1% total reduction). The experiment was conducted without soil mixing or disturbance. The relatively high TPH removal efficiency achieved by the PP–bioaugmentation serial foam application may be attributed to an increase in soil pH caused by the PP and effective infiltration of the remediation agent by foaming. The applied PP foam increased the pH of the acidic soil, thus enhancing microbial activity. The first-order biodegradation rate after PP oxidation was calculated to be 0.068 d−1. Furthermore, 94% of the group of relatively persistent hydrocarbons (C18–C22) was removed by PP–bioaugmentation, as verified by chromatogram peaks. Some physicochemical parameters related to contaminant removal efficiency were also evaluated. The results reveal that PP can degrade soil TPH and significantly enhance the biodegradation rate in unsaturated diesel-contaminated soil when combined with bioaugmentation foam.