SEGH Articles

SEGH 2015 Bratislava

09 December 2014
The local organising institution of the 31st International Conference of the SEGH in 2015 was established in 1940 and performs the tasks of the State Geological Survey of the Slovak Republic.

State Geological Institute of Dionyz Stur (SGIDS) (http://www.geology.sk/new/en) the local organising institution of the 31st International Conference of the Society for Environmental Geochemistry and Health in 2015 was established in 1940 and performs the tasks of the State Geological Survey of the Slovak Republic. As a state contributory organization it is supervised by the Ministry of Environment of the Slovak Republic. Its activities focus mainly on solutions of geological research and exploration projects, creation and application of the information system in geology, registration, collection, evidence and making the results of geological works carried out at the territory of the Slovak Republic available to the public. SGIDS provides independent expertise, lecturing, consulting and advisory activities and compiles the input documents for the state administration. Our organisation successfully organised the SEGH conference as early as in 2006 and has also long-term experience in organizing a number of international meetings and workshops.

 

Local organising committee consists of a group of junior and senior geochemists working either at the State Geological Institute of Dionyz Stur or Comenius University Bratislava, Faculty of Natural Sciences as well as hygienists and epidemiologists from public health authorities and the World Health Organisation.  

The head of the committee is Stanislav Rapant, senior researcher in the field of environmental geology, environmental geochemistry, geological mapping, regional geochemistry, environmental monitoring, geochemical prospection and hydrogeochemistry. He was one of the leading researchers and editors within the programme of Geochemical Atlases of the Slovak Republic carried out in the past. In the last 15 years he has been dealing with the research in the field of medical geology and geochemistry and was in charge of several medical-geochemical projects performed at regional level in the Slovak Republic. Nowadays, he is a project manager of two projects financed under the EU Life+ programme GEOHEALTH (LIFE10 ENV/SK/086, http://www.geology.sk/geohealth /? lang=en) and LIFE FOR KRUPINA (LIFE12 ENV/SK/094, www.geology.sk/lifeforkrupina). Both projects are highly innovative and bring new methodological approaches for analysis of a geological environment and human health relationship.

 

The 31st SEGH Conference in 2015 will be held in Bratislava, the Slovak Republic also on the occasion of the final implementation of the project GEOHEALTH (LIFE10 ENV/SK/086) that financially supports this event.

 

Project GEOHEALTH aims to analyse and reduce negative impact of geological environment on the health status of residents of the Slovak Republic. The background project information and presentation of its partial results and outputs is published on the project website http://www.geology.sk/geohealth/?lang=en. So far, project team members have actively presented the project results on the following international forums: Aveiro, Portugal 2012 (ISEG), Toulouse, France (SEGH 2013) and Newcastle-upon-Tyne, UK (SEGH 2014).

 

GEOHEALTH project background information

The main project objective is to link the information on the health status of Slovak residents (health indicators) with the data on geochemical background (environmental indicators) in order to analyse a relationship between geological environment and human health in the Slovak Republic. The dataset of health indicators was compiled based on ICD registry, 10th revision and WHO methodology and consists of health indicators characterising various causes of deaths at a municipality level (2,883 municipalities in total). The main emphasis is particularly laid on the most common causes of deaths in our country including cardiovascular and oncological diseases (about 75% of all death causes). Other causes of deaths e.g. diseases of gastrointestinal tract, respiratory diseases and diseases of endocrine system are also subject to our analysis. The dataset of environmental indicators was compiled at the same municipal level and based on all available geochemical data obtained within the environmental-geochemical mapping programme in the Slovak Republic including groundwater and soils. The compiled datasets of health and environmental indicators provide unified information on health status and geochemical background for the whole Slovak territory at a municipality level. We have created a model of more than 5.5 million of Slovak inhabitants in order to analyse the associations between geochemical environment and human health. Except for standard statistical methods of data analysis (linear, Spearman correlations), we have also used a method of artificial intelligence – neural networks. So far, we have not processed all the data but we have achieved some partial results of our study. These results point out to the fact that there are macro-elements (mainly Ca, Mg, Ca+Mg, Na, K) which report the most significant and decisive influence on human health status of residents. The influence of potentially toxic elements such as As, Pb, Hg, Cu, Cd and others is of a much lower significance than we have supposed earlier. The most common causes of deaths – cardiovascular and oncological diseases – are very closely associated with chemical contents of Ca and Mg in groundwater/drinking water as well as in soils. The municipalities with Ca and Mg deficit in geochemical environment (geochemical background – silicate volcanic, granitic and metamorphic rocks) are characterised by higher occurrence of deaths due to cardiovascular and oncological diseases (often more than 50%) on the contrary to  the municipalities with higher contents of both chemical elements in groundwater and soils (geochemical background – carbonates, flysh sediments).  In addition, the mean life expectancy of residents living in carbonate geological environment is significantly higher (about 2 – 4 years) than of those living in silicate geological environment.

Project partial results were published as original scientific papers in international magazines and are available together with the information on project progress at http://www.geology.sk/geohealth/?lang=en.

The presentation of Geohealth project results will take place in the scientific programme of the SEGH conference in 2015, including methodology for compilation of datasets of environmental and health indicators from national databases and registries, neural network analysis of environmental and health data, definition of optimum range of chemical concentrations in groundwater and soils in relation to human health.

The 31st SEGH conference addresses experts in the field of environmental geochemistry and medical geochemistry and similar disciplines to exchange their experience.

The main topic of the conference: The link between environment and health.

The main conference themes include:

Theme 1: Health aspects of contamination of geological environment – waters, soils, sediments, air (risk assessment, risk management, legislative background, analytical procedures, monitoring),

Theme 2: Deficit and/or excess of chemical elements in geological environment and their health effects on humans, human biomonitoring

Theme 3: Linking of geochemical and medical data – datasets, procedures, methods.

 

Some information about Bratislava

Bratislava is the capital city of the Slovak Republic, situated in south-western part of the country (60 kilometres from Vienna), occupying both banks of the Danube River, the left bank of the Morava River and at foothills of Little Carpathians Mts. Bordering Austria and Hungary, it is the only national capital that borders two independent countries. Bratislava is the political, cultural, and economic centre of Slovakia. It is the seat of the Slovak president, the parliament, and the Slovak Executive. It is home to several universities, museums, theatres, galleries and other important cultural and educational institutions.

All relevant information about the conference can be found at conference website www.geology.sk/geohealth/segh-conference-2015.  More details also on the SEGH Events page.

 

The members of organising committee look forward to welcoming you to Bratislava in 2015.

Katarína Fajčíková,
State Geological Institute of Dionyz Stur (ŠGÚDŠ)
Bratislava
Slovak Republic

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Characteristics of PM 2.5 , CO 2 and particle-number concentration in mass transit railway carriages in Hong Kong 2017-08-01

    Abstract

    Fine particulate matter (PM2.5) levels, carbon dioxide (CO2) levels and particle-number concentrations (PNC) were monitored in train carriages on seven routes of the mass transit railway in Hong Kong between March and May 2014, using real-time monitoring instruments. The 8-h average PM2.5 levels in carriages on the seven routes ranged from 24.1 to 49.8 µg/m3, higher than levels in Finland and similar to those in New York, and in most cases exceeding the standard set by the World Health Organisation (25 µg/m3). The CO2 concentration ranged from 714 to 1801 ppm on four of the routes, generally exceeding indoor air quality guidelines (1000 ppm over 8 h) and reaching levels as high as those in Beijing. PNC ranged from 1506 to 11,570 particles/cm3, lower than readings in Sydney and higher than readings in Taipei. Correlation analysis indicated that the number of passengers in a given carriage did not affect the PM2.5 concentration or PNC in the carriage. However, a significant positive correlation (p < 0.001, R 2 = 0.834) was observed between passenger numbers and CO2 levels, with each passenger contributing approximately 7.7–9.8 ppm of CO2. The real-time measurements of PM2.5 and PNC varied considerably, rising when carriage doors opened on arrival at a station and when passengers inside the carriage were more active. This suggests that air pollutants outside the train and passenger movements may contribute to PM2.5 levels and PNC. Assessment of the risk associated with PM2.5 exposure revealed that children are most severely affected by PM2.5 pollution, followed in order by juveniles, adults and the elderly. In addition, females were found to be more vulnerable to PM2.5 pollution than males (p < 0.001), and different subway lines were associated with different levels of risk.

  • Comparison of chemical compositions in air particulate matter during summer and winter in Beijing, China 2017-08-01

    Abstract

    The development of industry in Beijing, the capital of China, particularly in last decades, has caused severe environmental pollution including particulate matter (PM), dust–haze, and photochemical smog, which has already caused considerable harm to local ecological environment. Thus, in this study, air particle samples were continuously collected in August and December, 2014. And elements (Si, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Cd, Ba, Pb and Ti) and ions ( \({\text{NO}}_{3}^{-}\) , \({\text{SO}}_{4}^{2-}\) , F, Cl, Na+, K+, Mg2+, Ca2+ and \({\text{NH}}_{4}^{+}\) ) were analyzed by inductively coupled plasma mass spectrometer and ion chromatography. According to seasonal changes, discuss the various pollution situations in order to find possible particulate matter sources and then propose appropriate control strategies to local government. The results indicated serious PM and metallic pollution in some sampling days, especially in December. Chemical Mass Balance model revealed central heating activities, road dust and vehicles contribute as main sources, account for 5.84–32.05 % differently to the summer and winter air pollution in 2014.

  • Annual ambient atmospheric mercury speciation measurement from Longjing, a rural site in Taiwan 2017-08-01

    Abstract

    The main purpose of this study was to monitor ambient air particulates and mercury species [RGM, Hg(p), GEM and total mercury] concentrations and dry depositions over rural area at Longjing in central Taiwan during October 2014 to September 2015. In addition, passive air sampler and knife-edge surrogate surface samplers were used to collect the ambient air mercury species concentrations and dry depositions, respectively, in this study. Moreover, direct mercury analyzer was directly used to detect the mercury Hg(p) and RGM concentrations. The result indicated that: (1) The average highest RGM, Hg(p), GEM and total mercury concentrations, and dry depositions were observed in January, prevailing dust storm occurred in winter season was the possible major reason responsible for the above findings. (2) The highest average RGM, Hg(p), GEM and total mercury concentrations, dry depositions and velocities were occurred in winter. This is because that China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. (3) The results indicated that the total mercury ratios of Kaohsiung to that of this study were 5.61. This is because that Kaohsiung has the largest industry density (~60 %) in Taiwan. (4) the USA showed average lower mercury species concentrations when compared to those of the other world countries. The average ratios of China/USA values were 89, 76 and 160 for total mercury, RGM and Hg(p), respectively, during the years of 2000–2012.