SEGH Articles

SEGH 2015 Bratislava

09 December 2014
The local organising institution of the 31st International Conference of the SEGH in 2015 was established in 1940 and performs the tasks of the State Geological Survey of the Slovak Republic.

State Geological Institute of Dionyz Stur (SGIDS) (http://www.geology.sk/new/en) the local organising institution of the 31st International Conference of the Society for Environmental Geochemistry and Health in 2015 was established in 1940 and performs the tasks of the State Geological Survey of the Slovak Republic. As a state contributory organization it is supervised by the Ministry of Environment of the Slovak Republic. Its activities focus mainly on solutions of geological research and exploration projects, creation and application of the information system in geology, registration, collection, evidence and making the results of geological works carried out at the territory of the Slovak Republic available to the public. SGIDS provides independent expertise, lecturing, consulting and advisory activities and compiles the input documents for the state administration. Our organisation successfully organised the SEGH conference as early as in 2006 and has also long-term experience in organizing a number of international meetings and workshops.

 

Local organising committee consists of a group of junior and senior geochemists working either at the State Geological Institute of Dionyz Stur or Comenius University Bratislava, Faculty of Natural Sciences as well as hygienists and epidemiologists from public health authorities and the World Health Organisation.  

The head of the committee is Stanislav Rapant, senior researcher in the field of environmental geology, environmental geochemistry, geological mapping, regional geochemistry, environmental monitoring, geochemical prospection and hydrogeochemistry. He was one of the leading researchers and editors within the programme of Geochemical Atlases of the Slovak Republic carried out in the past. In the last 15 years he has been dealing with the research in the field of medical geology and geochemistry and was in charge of several medical-geochemical projects performed at regional level in the Slovak Republic. Nowadays, he is a project manager of two projects financed under the EU Life+ programme GEOHEALTH (LIFE10 ENV/SK/086, http://www.geology.sk/geohealth /? lang=en) and LIFE FOR KRUPINA (LIFE12 ENV/SK/094, www.geology.sk/lifeforkrupina). Both projects are highly innovative and bring new methodological approaches for analysis of a geological environment and human health relationship.

 

The 31st SEGH Conference in 2015 will be held in Bratislava, the Slovak Republic also on the occasion of the final implementation of the project GEOHEALTH (LIFE10 ENV/SK/086) that financially supports this event.

 

Project GEOHEALTH aims to analyse and reduce negative impact of geological environment on the health status of residents of the Slovak Republic. The background project information and presentation of its partial results and outputs is published on the project website http://www.geology.sk/geohealth/?lang=en. So far, project team members have actively presented the project results on the following international forums: Aveiro, Portugal 2012 (ISEG), Toulouse, France (SEGH 2013) and Newcastle-upon-Tyne, UK (SEGH 2014).

 

GEOHEALTH project background information

The main project objective is to link the information on the health status of Slovak residents (health indicators) with the data on geochemical background (environmental indicators) in order to analyse a relationship between geological environment and human health in the Slovak Republic. The dataset of health indicators was compiled based on ICD registry, 10th revision and WHO methodology and consists of health indicators characterising various causes of deaths at a municipality level (2,883 municipalities in total). The main emphasis is particularly laid on the most common causes of deaths in our country including cardiovascular and oncological diseases (about 75% of all death causes). Other causes of deaths e.g. diseases of gastrointestinal tract, respiratory diseases and diseases of endocrine system are also subject to our analysis. The dataset of environmental indicators was compiled at the same municipal level and based on all available geochemical data obtained within the environmental-geochemical mapping programme in the Slovak Republic including groundwater and soils. The compiled datasets of health and environmental indicators provide unified information on health status and geochemical background for the whole Slovak territory at a municipality level. We have created a model of more than 5.5 million of Slovak inhabitants in order to analyse the associations between geochemical environment and human health. Except for standard statistical methods of data analysis (linear, Spearman correlations), we have also used a method of artificial intelligence – neural networks. So far, we have not processed all the data but we have achieved some partial results of our study. These results point out to the fact that there are macro-elements (mainly Ca, Mg, Ca+Mg, Na, K) which report the most significant and decisive influence on human health status of residents. The influence of potentially toxic elements such as As, Pb, Hg, Cu, Cd and others is of a much lower significance than we have supposed earlier. The most common causes of deaths – cardiovascular and oncological diseases – are very closely associated with chemical contents of Ca and Mg in groundwater/drinking water as well as in soils. The municipalities with Ca and Mg deficit in geochemical environment (geochemical background – silicate volcanic, granitic and metamorphic rocks) are characterised by higher occurrence of deaths due to cardiovascular and oncological diseases (often more than 50%) on the contrary to  the municipalities with higher contents of both chemical elements in groundwater and soils (geochemical background – carbonates, flysh sediments).  In addition, the mean life expectancy of residents living in carbonate geological environment is significantly higher (about 2 – 4 years) than of those living in silicate geological environment.

Project partial results were published as original scientific papers in international magazines and are available together with the information on project progress at http://www.geology.sk/geohealth/?lang=en.

The presentation of Geohealth project results will take place in the scientific programme of the SEGH conference in 2015, including methodology for compilation of datasets of environmental and health indicators from national databases and registries, neural network analysis of environmental and health data, definition of optimum range of chemical concentrations in groundwater and soils in relation to human health.

The 31st SEGH conference addresses experts in the field of environmental geochemistry and medical geochemistry and similar disciplines to exchange their experience.

The main topic of the conference: The link between environment and health.

The main conference themes include:

Theme 1: Health aspects of contamination of geological environment – waters, soils, sediments, air (risk assessment, risk management, legislative background, analytical procedures, monitoring),

Theme 2: Deficit and/or excess of chemical elements in geological environment and their health effects on humans, human biomonitoring

Theme 3: Linking of geochemical and medical data – datasets, procedures, methods.

 

Some information about Bratislava

Bratislava is the capital city of the Slovak Republic, situated in south-western part of the country (60 kilometres from Vienna), occupying both banks of the Danube River, the left bank of the Morava River and at foothills of Little Carpathians Mts. Bordering Austria and Hungary, it is the only national capital that borders two independent countries. Bratislava is the political, cultural, and economic centre of Slovakia. It is the seat of the Slovak president, the parliament, and the Slovak Executive. It is home to several universities, museums, theatres, galleries and other important cultural and educational institutions.

All relevant information about the conference can be found at conference website www.geology.sk/geohealth/segh-conference-2015.  More details also on the SEGH Events page.

 

The members of organising committee look forward to welcoming you to Bratislava in 2015.

Katarína Fajčíková,
State Geological Institute of Dionyz Stur (ŠGÚDŠ)
Bratislava
Slovak Republic

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Editorial 2018-12-11
  • Chemical fractionation of heavy metals in fine particulate matter and their health risk assessment through inhalation exposure pathway 2018-12-11

    Abstract

    Samples of PM2.5 were collected from an urban area close to a national highway in Agra, India and sequentially extracted into four different fractions: water soluble (F1), reducible (F2), oxidizable (F3) and residual fraction (F4) for chemical fractionation of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), nickel (Ni) and lead (Pb). The metals were analyzed by inductively coupled plasma optical emission spectroscopy in each fraction. The average mass concentration of PM2.5 was 93 ± 24 μg m−3.The total concentrations of Cr, Pb, Ni, Co, As and Cd in fine particle were 192 ± 54, 128 ± 25, 108 ± 34, 36 ± 6, 35 ± 5 and 8 ± 2 ng m−3, respectively. Results indicated that Cd and Co had the most bioavailability indexes. Risk Assessment Code and contamination factors were calculated to assess the environmental risk. The present study evaluated the potential Pb hazard to young children using the Integrated Exposure Uptake Biokinetic Model. From the model, the probability density of PbB (blood lead level) revealed that at the prevailing atmospheric concentration, 0.302 children are expected to have PbB concentrations exceeding 10 μg dL−1 and an estimated IQ (intelligence quotient) loss of 1.8 points. The predicted blood Pb levels belong to Group 3 (PbB < 5 μg dL−1). Based on the bioavailable fractions, carcinogenic and non-carcinogenic risks via inhalation exposure were assessed for infants, toddlers, children, males and females. The hazard index for potential toxic metals was 2.50, which was higher than the safe limit (1). However, the combined carcinogenic risk for infants, toddlers, children, males and females was marginally higher than the precautionary criterion (10−6).

  • Effects of steel slag and biochar amendments on CO 2 , CH 4 , and N 2 O flux, and rice productivity in a subtropical Chinese paddy field 2018-12-07

    Abstract

    Steel slag, a by-product of the steel industry, contains high amounts of active iron oxide and silica which can act as an oxidizing agent in agricultural soils. Biochar is a rich source of carbon, and the combined application of biochar and steel slag is assumed to have positive impacts on soil properties as well as plant growth, which are yet to be validated scientifically. We conducted a field experiment for two rice paddies (early and late paddy) to determine the individual and combined effects of steel slag and biochar amendments on CO2, CH4, and N2O emission, and rice productivity in a subtropical paddy field of China. The amendments did not significantly affect rice yield. It was observed that CO2 was the main greenhouse gas emitted from all treatments of both paddies. Steel slag decreased the cumulative CO2 flux in the late paddy. Biochar as well as steel slag + biochar treatment decreased the cumulative CO2 flux in the late paddy and for the complete year (early and late paddy), while steel slag + biochar treatment also decreased the cumulative CH4 flux in the early paddy. The biochar, and steel slag + biochar amendments decreased the global warming potential (GWP). Interestingly, the cumulative annual GWP was lower for the biochar (55,422 kg CO2-eq ha−1), and steel slag + biochar (53,965 kg CO2-eq ha−1) treatments than the control (68,962 kg CO2-eq ha−1). Total GWP per unit yield was lower for the combined application of steel slag + biochar (8951 kg CO2-eq Mg−1 yield) compared to the control (12,805 kg CO2-eq Mg−1 yield). This study suggested that the combined application of steel slag and biochar could be an effective long-term strategy to reduce greenhouse gases emission from paddies without any detrimental effect on the yield.