SEGH Articles

SEGH Journal Impact Factor News

03 August 2014
The Society's journal Environmental Geochemistry & Health (EGAH), received good news recently with the announcement of a significant increase in its impact factor, now reaching 2.573.

The editor in Chief, Professor Ming Hung Wong, sent the following message to SEGH members:

 

I am very pleased with the new impact factor which indicated the articles included in our EGAH are interesting, important and timely. The past few years, we have received an increasing number of high quality papers from more countries, addressing various current issues on environmental geochemistry of elements and their environmental and human health. There is no doubt that EGAH will scale new height in the very near future, judging from the momentum we have experienced the past few years.

May I use this opportunity to thank our publisher at Springer, Betty and Paul for their continuous guidance, Andrew (Hursthouse) and members of SEGH board’s contribution in shaping the future directions of EGAH, the coordinating editors for overseeing papers assigned to them, and the reviewers for commenting on the papers. I sincerely hope that you will continue to support EGAH by serving on the board, and serving as reviewers. Nevertheless, most important of all, send your high quality papers to EGAH.

Best wishes

Ming Hung Wong,

Editor in Chief, Environmental Geochemistry & Health

 

On behalf of the SEGH board I would also like to record our thanks to Springer staff and in particular personal best wishes to Betty Van Herk, who retired from Springer on 31st July 2014. Betty and her colleagues have supported SEGH over many years, beyond the role of publishing the journal by discussing SEGH conference themes and topics to help raise both the Society and Journal profile. A great team and part of a wider SEGH “family”. Our conferences continue to be successful and popular, organised with great enthusiasm and good scientific focus. It is wonderful to see this translating into high quality papers with increasing impact.  Don't forget, you can access EGAH and its back catalogue through www.segh.net as a full member of SEGH.

 

Professor Andrew Hursthouse

International President, SEGH

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Agro-ecological suitability assessment of Chinese Medicinal Yam under future climate change 2019-10-15

    Abstract

    Chinese Medicinal Yam (CMY) has been prescribed as medicinal food for thousand years in China by Traditional Chinese Medicine (TCM) practitioners. Its medical benefits include nourishing the stomach and spleen to improve digestion, replenishing lung and kidney, etc., according to the TCM literature. As living standard rises and public health awareness improves in recent years, the potential medicinal benefits of CMY have attracted increasing attention in China. It has been found that the observed climate change in last several decades, together with the change in economic structure, has driven significant shift in the pattern of the traditional CMY planting areas. To identify suitable planting area for CMY in the near future is critical for ensuring the quality and supply quantity of CMY, guiding the layout of CMY industry, and safeguarding the sustainable development of CMY resources for public health. In this study, we first collect 30-year records of CMY varieties and their corresponding phenology and agro-meteorological observations. We then consolidate these data and use them to enrich and update the eco-physiological parameters of CMY in the agro-ecological zone (AEZ) model. The updated CMY varieties and AEZ model are validated using the historical planting area and production under observed climate conditions. After the successful validation, we use the updated AEZ model to simulate the potential yield of CMY and identify the suitable planting regions under future climate projections in China. This study shows that regions with high ecological similarity to the genuine and core producing areas of CMY mainly distribute in eastern Henan, southeastern Hebei, and western Shandong. The climate suitability of these areas will be improved due to global warming in the next 50 years, and therefore, they will continue to be the most suitable CMY planting regions.

  • Application of stable isotopes and dissolved ions for monitoring landfill leachate contamination 2019-10-15

    Abstract

    We evaluated groundwater contamination by landfill leachate at a municipal landfill and characterized isotopic and hydrogeochemical evidence of the degradation and natural attenuation of buried organic matter at the study site. Dissolved ion content was generally much higher in the leachate than in the surrounding groundwater. The leachate was characterized by highly elevated bicarbonate and ammonium levels and a lack of nitrate and sulfate, indicating generation under anoxic conditions. Leachate δD and δ13CDIC values were much higher than those of the surrounding groundwater; some groundwater samples near the landfill showed a significant contamination by the leachate plume. Hydrochemical characteristics of the groundwater suggest that aquifer geology in the study area plays a key role in controlling the natural attenuation of leachate plumes in this oxygen-limited environment.

  • Lead transfer into the vegetation layer growing naturally in a Pb-contaminated site 2019-10-10

    Abstract

    The lead was one of the main elements in the glazes used to colour ceramic tiles. Due to its presence, ceramic sludge has been a source of environmental pollution since this dangerous waste has been often spread into the soil without any measures of pollution control. These contaminated sites are often located close to industrial sites in the peri-urban areas, thus representing a considerable hazard to the human and ecosystem health. In this study, we investigated the lead transfer into the vegetation layer (Phragmites australis, Salix alba and Sambucus nigra) growing naturally along a Pb-contaminated ditch bank. The analysis showed a different lead accumulation among the species and their plant tissues. Salix trees were not affected by the Pb contamination, possibly because their roots mainly develop below the contaminated deposit. Differently, Sambucus accumulated high concentrations of lead in all plant tissues and fruits, representing a potential source of biomagnification. Phragmites accumulated large amounts of lead in the rhizomes and, considering its homogeneous distribution on the site, was used to map the contamination. Analysing the Pb concentration within plant tissues, we got at the same time information about the spread, the history of the contamination and the relative risks. Finally, we discussed the role of natural recolonizing plants for the soil pollution mitigation and their capacity on decreasing soil erosion and water run-off.