SEGH Articles

SEGH Journal Impact Factor News

03 August 2014
The Society's journal Environmental Geochemistry & Health (EGAH), received good news recently with the announcement of a significant increase in its impact factor, now reaching 2.573.

The editor in Chief, Professor Ming Hung Wong, sent the following message to SEGH members:

 

I am very pleased with the new impact factor which indicated the articles included in our EGAH are interesting, important and timely. The past few years, we have received an increasing number of high quality papers from more countries, addressing various current issues on environmental geochemistry of elements and their environmental and human health. There is no doubt that EGAH will scale new height in the very near future, judging from the momentum we have experienced the past few years.

May I use this opportunity to thank our publisher at Springer, Betty and Paul for their continuous guidance, Andrew (Hursthouse) and members of SEGH board’s contribution in shaping the future directions of EGAH, the coordinating editors for overseeing papers assigned to them, and the reviewers for commenting on the papers. I sincerely hope that you will continue to support EGAH by serving on the board, and serving as reviewers. Nevertheless, most important of all, send your high quality papers to EGAH.

Best wishes

Ming Hung Wong,

Editor in Chief, Environmental Geochemistry & Health

 

On behalf of the SEGH board I would also like to record our thanks to Springer staff and in particular personal best wishes to Betty Van Herk, who retired from Springer on 31st July 2014. Betty and her colleagues have supported SEGH over many years, beyond the role of publishing the journal by discussing SEGH conference themes and topics to help raise both the Society and Journal profile. A great team and part of a wider SEGH “family”. Our conferences continue to be successful and popular, organised with great enthusiasm and good scientific focus. It is wonderful to see this translating into high quality papers with increasing impact.  Don't forget, you can access EGAH and its back catalogue through www.segh.net as a full member of SEGH.

 

Professor Andrew Hursthouse

International President, SEGH

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • The society for environmental Geochemistry and health (SEGH): a retrospect 2019-02-22
  • Air quality and PM 10 -associated poly-aromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches 2019-02-19

    Abstract

    Diesel engine railway traffic causes atmosphere pollution due to the exhaust emission which may be harmful to the passengers as well as workers. In this study, the air quality and PM10 concentrations were evaluated around a railway station in Northeast India where trains are operated with diesel engines. The gaseous pollutant (e.g. SO2, NO2, and NH3) was collected and measured by using ultraviolet–visible spectroscopy. The advanced level characterizations of the PM10 samples were carried out by using ion chromatography, Fourier-transform infrared, X-ray diffraction, inductively coupled plasma optical emission spectrometry , X-ray photoelectron spectroscopy, field-emission scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy with energy-dispersive spectroscopy techniques to know their possible environmental contaminants. High-performance liquid chromatography technique was used to determine the concentration of polycyclic aromatic hydrocarbons to estimate the possible atmospheric pollution level caused by the rail traffic in the enclosure. The average PM10 concentration was found to be 262.11 µg m−3 (maximum 24 hour) which indicates poor air quality (AQI category) around the rail traffic. The statistical and air mass trajectory analysis was also done to know their mutual correlation and source apportionment. This study will modify traditional studies where only models are used to simulate the origins.

  • The geochemistry of geophagic material consumed in Onangama Village, Northern Namibia: a potential health hazard for pregnant women in the area 2019-02-18

    Abstract

    Ingestion of geophagic materials might affect human health and induce diseases by different ways. The purpose of this study is to determine the geochemical composition of geophagic material consumed especially by pregnant women in Onangama Village, Northern Namibia and to assess its possible health effects. X-ray fluorescence and inductively coupled plasma mass spectrometry were used in order to determine the major, and trace elements as well as anions concentrations of the consumed material. The geochemical analysis revealed high concentrations of aluminium (Al), calcium (Ca), iron (Fe), magnesium (Mg), manganese (Mn), potassium (K), sodium (Na), and silica (Si); and trace elements including arsenic (As), chromium (Cr), mercury (Hg), nickel (Ni) and vanadium (V) as well as sulphate (SO42−), nitrate (NO3), and nitrite (NO2) anions comparing to the recommended daily allowance for pregnant women. The pH for some of the studied samples is alkaline, which might increase the gastrointestinal tract pH (pH < 2) and cause a decrease in the bioavailability of elements. The calculated health risk index (HRI > 1) revealed that Al and Mn might be a potential risk for human consumption. Based on the results obtained from the geochemical analysis, the consumption of the studied material might present a potential health risk to pregnant women including concomitant detrimental maternal and foetal effects.