SEGH Articles

SEGH membership

05 February 2014
A hidden opportunity: Collaborative Development of teaching and learning in Environmental Geochemistry and Health at the Department of Geology, University of Calabar, Nigeria

 

The topic of Environmental Geochemistry has existed as a postgraduate course of study in the Department of Geology, University of Calabar in Nigeria for the past eighteen years. After my Commonwealth Academic Fellowship in 2008-2009, hosted by Prof A.S Hursthouse at the School of Science, University of the West of Scotland, I became a member of SEGH. The skills acquired during this period and as a registered member of SEGH, we decided to review the existing environmental geochemistry curriculum during my tenure as the Head of Department in 2012, since being established in 1976, its first female to hold that post.

 

Through my colleagues in SEGH, I was able to consult widely with members of the International SEGH board to review and gather opinion on the programme topics and syllabus content. This exercise was of great help and a real benefit to get feedback from the environmental geochemistry and health community, giving a real international perspective. It has helped to provide a good justification for changes to the programme in discussion with our University. The course was approved as an area of specialization under Environmental Geoscience section starting from 2013/2014 session. It is among the courses currently being advertised by the graduate school for this session and it will be in cooperated into the new graduate school brochure of the University to help to give it a wider publicity. It is anticipated that in future this will be extended to the undergraduate level when the curriculum will be reviewed as well.

We also hope that with further support from the members of SEGH we will be able to carry out some collaborative research where we lack the necessary laboratory facilities and some graduate students will be able to benefit from the expertise of SEGH members as the need arises.

At this juncture, I would like to thank members of SEGH for their input in structuring of the curriculum.

 

Dr Therese Nganje

University of Calabar

 

 

Pictures:

  1. Dr Therese Nganje with Departmental alumni, 2012
  2. Students of the Department of Geology, University of Calabar, 2012
  3. University of Calabar
Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • The society for environmental Geochemistry and health (SEGH): a retrospect 2019-02-22
  • Air quality and PM 10 -associated poly-aromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches 2019-02-19

    Abstract

    Diesel engine railway traffic causes atmosphere pollution due to the exhaust emission which may be harmful to the passengers as well as workers. In this study, the air quality and PM10 concentrations were evaluated around a railway station in Northeast India where trains are operated with diesel engines. The gaseous pollutant (e.g. SO2, NO2, and NH3) was collected and measured by using ultraviolet–visible spectroscopy. The advanced level characterizations of the PM10 samples were carried out by using ion chromatography, Fourier-transform infrared, X-ray diffraction, inductively coupled plasma optical emission spectrometry , X-ray photoelectron spectroscopy, field-emission scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy with energy-dispersive spectroscopy techniques to know their possible environmental contaminants. High-performance liquid chromatography technique was used to determine the concentration of polycyclic aromatic hydrocarbons to estimate the possible atmospheric pollution level caused by the rail traffic in the enclosure. The average PM10 concentration was found to be 262.11 µg m−3 (maximum 24 hour) which indicates poor air quality (AQI category) around the rail traffic. The statistical and air mass trajectory analysis was also done to know their mutual correlation and source apportionment. This study will modify traditional studies where only models are used to simulate the origins.

  • The geochemistry of geophagic material consumed in Onangama Village, Northern Namibia: a potential health hazard for pregnant women in the area 2019-02-18

    Abstract

    Ingestion of geophagic materials might affect human health and induce diseases by different ways. The purpose of this study is to determine the geochemical composition of geophagic material consumed especially by pregnant women in Onangama Village, Northern Namibia and to assess its possible health effects. X-ray fluorescence and inductively coupled plasma mass spectrometry were used in order to determine the major, and trace elements as well as anions concentrations of the consumed material. The geochemical analysis revealed high concentrations of aluminium (Al), calcium (Ca), iron (Fe), magnesium (Mg), manganese (Mn), potassium (K), sodium (Na), and silica (Si); and trace elements including arsenic (As), chromium (Cr), mercury (Hg), nickel (Ni) and vanadium (V) as well as sulphate (SO42−), nitrate (NO3), and nitrite (NO2) anions comparing to the recommended daily allowance for pregnant women. The pH for some of the studied samples is alkaline, which might increase the gastrointestinal tract pH (pH < 2) and cause a decrease in the bioavailability of elements. The calculated health risk index (HRI > 1) revealed that Al and Mn might be a potential risk for human consumption. Based on the results obtained from the geochemical analysis, the consumption of the studied material might present a potential health risk to pregnant women including concomitant detrimental maternal and foetal effects.