SEGH Articles

SESEH Promotes Collaborations with China in Environment and Health

01 October 2012
The 2012 Sino-European Symposium on Environment and Health (SESEH 2012) was successfully held at the National University of Ireland, Galway during August 20 - 25, 2012.

This brand new conference has attracted a total number of 212 participants from a total number of 28 countries, including 53 students and 10 accompanying persons. Nearly half of the participants are Chinese, with the number of 93. Among them 77 are directly from China, and 16 are overseas Chinese. The number of participants from Ireland is 57, including 7 overseas Chinese studying or working in Ireland.

 

The SESEH 2012 provides an internationally leading platform for interaction between scientists, consultants, and public servants engaged in the multi-disciplinary areas of environment and health. With the fast economic growth, the importance of environment and health is widely recognized in China, and China welcomes international experts for collaboration. The aim of SESEH is to promote collaborations with China. This symposium provides an opportunity for a direct communication between experts from China and the rest of the world, and helps to foster and develop Microbiology, Pharmaceuticals, POPs and Pesticides, Sediment Pollution, Soil Remediation, Soil Threats, Smart Wastewater Treatment, and Water Quality.  There were international collaborations with China, the 2nd largest economy of the world.

The theme of environment and health is one of the most challenging issues that human beings are currently facing. With the economic development and improvement of our quality of life, the environment around us is under pressure, and often deteriorating. This has raised many questions that require answers: Is the air we breathe still fresh? Is the water we drink still clean? Is the food we eat still safe? This conference brings together international experts in Galway to discuss these questions. The themes cover a wide range of topics including: Advanced Medical Mineralogy, Air Quality, Bioavailability and bioaccessibility, Clays, Coal and Health, Cryptosporidium, Environmental Health, Environmental Health in Buildings, Environmental Management, Environmental Sensors, GIS and Quantitative Methods, Land Use and Soil Environment.

 

A total of 6 internationally leading experts serving as keynote speakers of SESEH 2012: Professors Ming-Hung Wong, Shu Tao, Xiaoying Zheng, Derek Clements-Croome, Jerome Nriagu, and William Manning. In addition, the world-renowned Medical Geology Short Course was successfully held as a pre-conference workshop of SESEH 2012, led by Dr. Jose Centeno, Dr. Olle Selinus, Dr. Bob Finkelman, and Dr. Maurice Mulcahy.

 

 

 

A special section in Environmental Pollution and a special issue in Environmental Geochemistry and Health are under preparation. One best student poster and two best student oral presentations were awarded.

 

Galway is a popular tourist destination, attracting more than 1 million international visitors annually. SESEH 2012 delegates and their accompanying persons have undoubtedly made a significant contribution to the local economy. Galway has provided SESEH 2012 delegates a good experience with its well preserved Irish tradition, hospitality and natural beauty.

 

The SESEH 2012 conference is co-organised by the GIS Centre, Ryan Institute of NUI Galway (http://www.ryaninstitute.ie/facilities/gis-centre), The Geographical Society of China (www.gsc.org.cn) and Environmental Sciences Association of Ireland (ISAI, www.esaiweb.org), supported by Ryan Institute of NUI Galway (www.ryaninstitute.ie), Society for Environmental Geochemistry and Health (SEGH, www.segh.net), International Medical Geology Association (IMGA, www.medicalgeology.org), Geographical Society of Ireland (www.ucd.ie/gsi), Ireland Chinese Association of Environment, Resources & Energy (ICAERE, www.icaere.ie), National Centre for Geocomputation (ncg.nuim.ie), South China Institute of Environmental Sciences (http://www.scies.org/en) and Chinese Environmental Scholars & Professionals Network (http://www.cespn.net/english).

Dr Chaosheng Zhang, University of Ireland, Galway.

 

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Editorial 2018-12-11
  • Chemical fractionation of heavy metals in fine particulate matter and their health risk assessment through inhalation exposure pathway 2018-12-11

    Abstract

    Samples of PM2.5 were collected from an urban area close to a national highway in Agra, India and sequentially extracted into four different fractions: water soluble (F1), reducible (F2), oxidizable (F3) and residual fraction (F4) for chemical fractionation of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), nickel (Ni) and lead (Pb). The metals were analyzed by inductively coupled plasma optical emission spectroscopy in each fraction. The average mass concentration of PM2.5 was 93 ± 24 μg m−3.The total concentrations of Cr, Pb, Ni, Co, As and Cd in fine particle were 192 ± 54, 128 ± 25, 108 ± 34, 36 ± 6, 35 ± 5 and 8 ± 2 ng m−3, respectively. Results indicated that Cd and Co had the most bioavailability indexes. Risk Assessment Code and contamination factors were calculated to assess the environmental risk. The present study evaluated the potential Pb hazard to young children using the Integrated Exposure Uptake Biokinetic Model. From the model, the probability density of PbB (blood lead level) revealed that at the prevailing atmospheric concentration, 0.302 children are expected to have PbB concentrations exceeding 10 μg dL−1 and an estimated IQ (intelligence quotient) loss of 1.8 points. The predicted blood Pb levels belong to Group 3 (PbB < 5 μg dL−1). Based on the bioavailable fractions, carcinogenic and non-carcinogenic risks via inhalation exposure were assessed for infants, toddlers, children, males and females. The hazard index for potential toxic metals was 2.50, which was higher than the safe limit (1). However, the combined carcinogenic risk for infants, toddlers, children, males and females was marginally higher than the precautionary criterion (10−6).

  • Effects of steel slag and biochar amendments on CO 2 , CH 4 , and N 2 O flux, and rice productivity in a subtropical Chinese paddy field 2018-12-07

    Abstract

    Steel slag, a by-product of the steel industry, contains high amounts of active iron oxide and silica which can act as an oxidizing agent in agricultural soils. Biochar is a rich source of carbon, and the combined application of biochar and steel slag is assumed to have positive impacts on soil properties as well as plant growth, which are yet to be validated scientifically. We conducted a field experiment for two rice paddies (early and late paddy) to determine the individual and combined effects of steel slag and biochar amendments on CO2, CH4, and N2O emission, and rice productivity in a subtropical paddy field of China. The amendments did not significantly affect rice yield. It was observed that CO2 was the main greenhouse gas emitted from all treatments of both paddies. Steel slag decreased the cumulative CO2 flux in the late paddy. Biochar as well as steel slag + biochar treatment decreased the cumulative CO2 flux in the late paddy and for the complete year (early and late paddy), while steel slag + biochar treatment also decreased the cumulative CH4 flux in the early paddy. The biochar, and steel slag + biochar amendments decreased the global warming potential (GWP). Interestingly, the cumulative annual GWP was lower for the biochar (55,422 kg CO2-eq ha−1), and steel slag + biochar (53,965 kg CO2-eq ha−1) treatments than the control (68,962 kg CO2-eq ha−1). Total GWP per unit yield was lower for the combined application of steel slag + biochar (8951 kg CO2-eq Mg−1 yield) compared to the control (12,805 kg CO2-eq Mg−1 yield). This study suggested that the combined application of steel slag and biochar could be an effective long-term strategy to reduce greenhouse gases emission from paddies without any detrimental effect on the yield.