SEGH Articles

SESEH Promotes Collaborations with China in Environment and Health

01 October 2012
The 2012 Sino-European Symposium on Environment and Health (SESEH 2012) was successfully held at the National University of Ireland, Galway during August 20 - 25, 2012.

This brand new conference has attracted a total number of 212 participants from a total number of 28 countries, including 53 students and 10 accompanying persons. Nearly half of the participants are Chinese, with the number of 93. Among them 77 are directly from China, and 16 are overseas Chinese. The number of participants from Ireland is 57, including 7 overseas Chinese studying or working in Ireland.

 

The SESEH 2012 provides an internationally leading platform for interaction between scientists, consultants, and public servants engaged in the multi-disciplinary areas of environment and health. With the fast economic growth, the importance of environment and health is widely recognized in China, and China welcomes international experts for collaboration. The aim of SESEH is to promote collaborations with China. This symposium provides an opportunity for a direct communication between experts from China and the rest of the world, and helps to foster and develop Microbiology, Pharmaceuticals, POPs and Pesticides, Sediment Pollution, Soil Remediation, Soil Threats, Smart Wastewater Treatment, and Water Quality.  There were international collaborations with China, the 2nd largest economy of the world.

The theme of environment and health is one of the most challenging issues that human beings are currently facing. With the economic development and improvement of our quality of life, the environment around us is under pressure, and often deteriorating. This has raised many questions that require answers: Is the air we breathe still fresh? Is the water we drink still clean? Is the food we eat still safe? This conference brings together international experts in Galway to discuss these questions. The themes cover a wide range of topics including: Advanced Medical Mineralogy, Air Quality, Bioavailability and bioaccessibility, Clays, Coal and Health, Cryptosporidium, Environmental Health, Environmental Health in Buildings, Environmental Management, Environmental Sensors, GIS and Quantitative Methods, Land Use and Soil Environment.

 

A total of 6 internationally leading experts serving as keynote speakers of SESEH 2012: Professors Ming-Hung Wong, Shu Tao, Xiaoying Zheng, Derek Clements-Croome, Jerome Nriagu, and William Manning. In addition, the world-renowned Medical Geology Short Course was successfully held as a pre-conference workshop of SESEH 2012, led by Dr. Jose Centeno, Dr. Olle Selinus, Dr. Bob Finkelman, and Dr. Maurice Mulcahy.

 

 

 

A special section in Environmental Pollution and a special issue in Environmental Geochemistry and Health are under preparation. One best student poster and two best student oral presentations were awarded.

 

Galway is a popular tourist destination, attracting more than 1 million international visitors annually. SESEH 2012 delegates and their accompanying persons have undoubtedly made a significant contribution to the local economy. Galway has provided SESEH 2012 delegates a good experience with its well preserved Irish tradition, hospitality and natural beauty.

 

The SESEH 2012 conference is co-organised by the GIS Centre, Ryan Institute of NUI Galway (http://www.ryaninstitute.ie/facilities/gis-centre), The Geographical Society of China (www.gsc.org.cn) and Environmental Sciences Association of Ireland (ISAI, www.esaiweb.org), supported by Ryan Institute of NUI Galway (www.ryaninstitute.ie), Society for Environmental Geochemistry and Health (SEGH, www.segh.net), International Medical Geology Association (IMGA, www.medicalgeology.org), Geographical Society of Ireland (www.ucd.ie/gsi), Ireland Chinese Association of Environment, Resources & Energy (ICAERE, www.icaere.ie), National Centre for Geocomputation (ncg.nuim.ie), South China Institute of Environmental Sciences (http://www.scies.org/en) and Chinese Environmental Scholars & Professionals Network (http://www.cespn.net/english).

Dr Chaosheng Zhang, University of Ireland, Galway.

 

 

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Biochar-based constructed wetlands to treat reverse osmosis rejected concentrates in chronic kidney disease endemic areas in Sri Lanka 2017-12-01

    Abstract

    The objectives were to investigate the potential remedial measures for reverse osmosis (RO) rejected water through constructed wetlands (CWs) with low-cost materials in the media established in chronic kidney disease of unknown etiology (CKDu) prevalent area in Sri Lanka. A pilot-scale surface and subsurface water CWs were established at the Medawachchiya community-based RO water supply unit. Locally available soil, calicut tile and biochar were used in proportions of 81, 16.5 and 2.5% (w/w), respectively, as filter materials in the subsurface. Vetiver grass and Scirpus grossus were selected for subsurface wetland while water lettuce and water hyacinth were chosen for free water surface CWs. Results showed that the CKDu sensitive parameters; total dissolved solids, hardness, total alkalinity and fluoride were reduced considerably (20–85%) and most met desirable levels of stipulated ambient standards. Biochar seemed to play a major role in removing fluoride from the system which may be due to the existing and adsorbed K+, Ca+2, Mg+2, etc. on the biochar surface via chemisorption. The least reduction was observed for alkalinity. This study indicated potential purification of aforesaid ions in water which are considerably present in RO rejection. Therefore, the invented bio-geo constructed wetland can be considered as a sustainable, economical and effective option for reducing high concentrations of CKDu sensitive parameters in RO rejected water before discharging into the inland waters.

  • Medical geology of endemic goiter in Kalutara, Sri Lanka; distribution and possible causes 2017-12-01

    Abstract

    This study assesses the distribution of goiter in the Kalutara District, Sri Lanka in order to find causative factors for the occurrence of goiter even after the salt iodization. A questionnaire survey was conducted at the household level and at the same time iodine and selenium levels of the water sources were analyzed. Questionnaire survey results indicated the highest numbers of goiter patients in the northern part where the lowest were found in the southern sector which may be due to the presence of acid sulfate soils. Females were more susceptible and it even showed a transmittance between generations. Average iodine concentrations in subsurface water of goiter endemic regions are 28.25 ± 15.47 μg/L whereas non-goiter regions show identical values at 24.74 ± 18.29 μg/L. Surface water exhibited relatively high values at 30.87 ± 16.13 μg/L. Endemic goiter was reported in some isolated patches where iodine and selenium concentrations low, latter was <10 μg/L. The formation of acid sulfate soils in the marshy lands in Kalutara district may lead to transformation of biological available iodine oxidation into volatile iodine by humic substances, at the same time organic matter rich peaty soil may have strong held of iodine and selenium which again induced by low pH and high temperature were suggested as the instrumental factors in the endemic goiter in Kalutara district. Hence, geochemical features such as soil pH, organic matter and thick lateritic cap in the Kalutara goiter endemic area play a role in controlling the available selenium and iodine for food chain through plant uptake and in water.

  • Nickel accumulation in paddy rice on serpentine soils containing high geogenic nickel contents in Taiwan 2017-12-01

    Abstract

    We investigated the extractability of nickel (Ni) in serpentine soils collected from rice paddy fields in eastern Taiwan to evaluate the bioavailability of Ni in the soils as well as for demonstrating the health risks of Ni in rice. Total Ni concentrations in the soils ranged were 70.2–2730 mg/kg (mean, 472 mg/kg), greatly exceeding the natural background content and soil control standard in Taiwan. Available Ni concentration only accounts for <10% of total soil Ni content; 0.1 N HCl-extractable Ni was the more suitable index for Ni bioavailability in the soil to rice than was diethylenetriaminepentaacetic acid (DTPA)-extractable Ni. The accumulation ability of rice roots was much higher than that of its shoots; however, compared with those reported previously, our brown and polished rice samples contained much higher Ni concentrations, within the ranges of 1.50–4.53 and 2.45–5.54 mg/kg, respectively. On the basis of the provisional tolerable Ni intake for adults recommended by the World Health Organization (WHO), daily consumption of this rice can result in an excessive Ni intake.