SEGH Articles

Sedimentary geochemistry of platinum in intertidal salt marsh sediments of the Tagus River Estuary, Lisbon, Portugal

03 December 2012
Studies of platinum in intertidal sediments have highlighted a number of features of Pt dynamics in saltmarsh environments.

 

Clara Almécija-Pereda was joint oral presentation winner at the 9th ISEG meeting held in Aveiro Portugal in July 2012. Her studies of platinum in intertidal sediments have highlighted a number of features of Pt dynamics in saltmarsh environments, an element which has rarely been studied in the estuarine environment. In December 2010 she started a PhD in Marine Biogeochemistry Group in Marine Research Institute IIM-CSIC (Spanish Research Council) in Vigo, under the supervision of Dr. Antonio Cobelo-García and Dr. Juan Santos-Echeandía and in collaboration with IPMA (Portuguese Institute of Sea and Atmosphere).

In order to better understand the role of salt mash plants in the cycle of this element, sediment cores from vegetated and non-vegetated intertidal sediments of the Tagus Estuary (Lisbon, Portugal, SW Europe), which are subject to strong anthropogenic inputs, were studied. Sediments cores, leaves, stems and roots of Sarcocornia fruticosa were collected in two salt marsh areas and analysed for their Pt concentration. Pore-water was separated from the sediments and analysed for dissolved Pt. Auxiliary parameters – dissolved oxygen, redox potential, total dissolved Mn and Fe – were also determined. Depth profiles of Pt in non-vegetated sediments showed low concentrations ranging from 0.5 to 1.0 ng g-1. Since oxygen penetration depth in these sediments is restricted to a few millimetres the observed slight enhancement with depth suggests its retention as sulphides or associated with sulphide phases. In vegetated sediments, higher levels of Pt were found in the uppermost layers (up to 3ng.g-1). This increase was found in sediment layers containing higher root biomass, suggesting that Pt retention may derived from plant activity. The atmospheric – traffic-borne – input of Pt may also contribute to the higher values in the topmost sediment layer.

Plant roots exhibited lower Pt concentrations (0.2-0.9 ng g-1) than sediments indicating that Pt is not significantly sequestered in root tissues. The oxic condition of vegetated sediments due to the plant activity may stabilize Pt in the dissolved fraction, aided by its association with dissolved organic matter derived from root exudates. Levels in the leaves and stems (0.015-0.12ng.g-1) were up to one order of magnitude lower than in roots, indicating that small amounts of Pt was translocated upward and not retained in the above ground tissues. Our results point that either S. fruticosa has low Pt phytoextraction capacity of and/or Pt is mostly present as non-bioavailable forms.

The results presented in this study were discussed in Aveiro in terms of their implications on (i) the status of Pt contamination in the Tagus Estuarine/Salt Marsh sediments due to traffic-borne emissions; (ii) the influence of redox conditions and vegetation on the geochemical sedimentary behaviour of Pt; and (iii) the uptake of Pt by vegetation.

Carla is currently (Autumn 2012) working at Dartmouth College (Hanover NH USA) as a visiting researcher and hopes to complete her PhD in Autumn 2014.

Clara Almécija-Pereda

Marine Research Institute IIM-CSIC, Vigo, Spain

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Improving arsenopyrite oxidation rate laws: implications for arsenic mobilization during aquifer storage and recovery (ASR) 2018-04-25

    Abstract

    Aquifer storage and recovery (ASR) and aquifer recharge (AR) provide technical solutions to address water supply deficits and growing future water demands. Unfortunately, the mobilization of naturally present arsenic due to ASR/AR operations has undermined its application on a larger scale. Predicting arsenic mobility in the subsurface during ASR/AR is further complicated by site-specific factors, including the arsenic mobilization mechanisms, groundwater flow conditions, and multi-phase geochemical interactions. In order to ensure safe and sustainable ASR/AR operation, a better understanding of these factors is needed. The current study thus aims to better characterize and model arsenic remobilization at ASR/AR sites by compiling and analyzing available kinetic data on arsenic mobilization from arsenopyrite under different aqueous conditions. More robust and widely applicable rate laws are developed for geochemical conditions relevant to ASR/AR. Sensitivity analysis of these new rate laws gives further insight into the controlling geochemical factors for arsenic mobilization. When improved rate laws are incorporated as the inputs for reactive transport modeling, arsenic mobilization in ASR/AR operations can be predicted with an improved accuracy. The outcomes will be used to guide groundwater monitoring and specify ASR/AR operational parameters, including water pretreatment requirements prior to injection.

  • Heavy metal exposure has adverse effects on the growth and development of preschool children 2018-04-25

    Abstract

    The purpose of this study was to investigate the associations between levels of lead (Pb), cadmium (Cd), chromium (Cr), and manganese (Mn) in the PM2.5 and blood and physical growth, and development parameters including birth length and weight, height, weight, body mass index (BMI), head circumference, and chest circumference in preschool children from Guiyu (e-waste exposure area) and Haojiang (the reference area). A total of 470 preschool children from Guiyu and Haojiang located in southeast coast of China were recruited and required to undergo physical examination and blood tests during the study period. Birth length and weight were obtained by birth records and questionnaire. Pb and Cd in both PM2.5 and blood were significantly higher in Guiyu than Haojiang. Remarkably, the children of Guiyu had significantly lower birth weight and length, BMI, and chest circumference when compare to their peers from the reference area (all p value < 0.05). Spearman correlation analyses showed that blood Pb was negatively correlated with height (r = −0.130, p < 0.001), weight (r = −0.169, p < 0.001), BMI (r = −0.100, p < 0.05), head circumference (r = −0.095, p < 0.05), and chest circumference (r = −0.112, p < 0.05). After adjustment for the potential confounders in further linear regression analyses, blood Pb was negatively associated with height (β = −0.066, p < 0.05), weight (β = −0.119, p < 0.001), head circumference (β = −0.123, p < 0.01), and chest circumference (β = −0.104, p < 0.05), respectively. No significant association between blood Cd, Cr, or Mn was found with any of our developmental outcomes. Taken together, lead exposure limits or delays the growth and development of preschool children.

  • Contamination characteristics of trace metals in dust from different levels of roads of a heavily air-polluted city in north China 2018-04-24

    Abstract

    Concentrations of eight trace metals (TMs) in road dust (RD) (particles < 25 μm) from urban areas of Xinxiang, China, were determined by inductively coupled plasma mass spectrometry. The geometric mean concentrations of Zn, Mn, Pb, As, Cu, Cr, Ni and Cd were 489, 350, 114, 101, 60.0, 39.7, 31.6, and 5.1 mg kg−1, respectively. When compared with TM levels in background soil, the samples generally display elevated TM concentrations, except for Cr and Mn, and for Cd the enrichment value was 69.6. Spatial variations indicated TMs in RD from park path would have similar sources with main roads, collector streets and bypasses. Average daily exposure doses of the studied TMs were about three orders of magnitude higher for hand-to-mouth ingestion than dermal contact, and the exposure doses for children were 9.33 times higher than that for adults. The decreasing trend of calculated hazard indexes (HI) for the eight elements was As > Pb > Cr > Mn > Cd > Zn > Ni > Cu for both children and adults.