SEGH Articles

Sedimentary geochemistry of platinum in intertidal salt marsh sediments of the Tagus River Estuary, Lisbon, Portugal

03 December 2012
Studies of platinum in intertidal sediments have highlighted a number of features of Pt dynamics in saltmarsh environments.

 

Clara Almécija-Pereda was joint oral presentation winner at the 9th ISEG meeting held in Aveiro Portugal in July 2012. Her studies of platinum in intertidal sediments have highlighted a number of features of Pt dynamics in saltmarsh environments, an element which has rarely been studied in the estuarine environment. In December 2010 she started a PhD in Marine Biogeochemistry Group in Marine Research Institute IIM-CSIC (Spanish Research Council) in Vigo, under the supervision of Dr. Antonio Cobelo-García and Dr. Juan Santos-Echeandía and in collaboration with IPMA (Portuguese Institute of Sea and Atmosphere).

In order to better understand the role of salt mash plants in the cycle of this element, sediment cores from vegetated and non-vegetated intertidal sediments of the Tagus Estuary (Lisbon, Portugal, SW Europe), which are subject to strong anthropogenic inputs, were studied. Sediments cores, leaves, stems and roots of Sarcocornia fruticosa were collected in two salt marsh areas and analysed for their Pt concentration. Pore-water was separated from the sediments and analysed for dissolved Pt. Auxiliary parameters – dissolved oxygen, redox potential, total dissolved Mn and Fe – were also determined. Depth profiles of Pt in non-vegetated sediments showed low concentrations ranging from 0.5 to 1.0 ng g-1. Since oxygen penetration depth in these sediments is restricted to a few millimetres the observed slight enhancement with depth suggests its retention as sulphides or associated with sulphide phases. In vegetated sediments, higher levels of Pt were found in the uppermost layers (up to 3ng.g-1). This increase was found in sediment layers containing higher root biomass, suggesting that Pt retention may derived from plant activity. The atmospheric – traffic-borne – input of Pt may also contribute to the higher values in the topmost sediment layer.

Plant roots exhibited lower Pt concentrations (0.2-0.9 ng g-1) than sediments indicating that Pt is not significantly sequestered in root tissues. The oxic condition of vegetated sediments due to the plant activity may stabilize Pt in the dissolved fraction, aided by its association with dissolved organic matter derived from root exudates. Levels in the leaves and stems (0.015-0.12ng.g-1) were up to one order of magnitude lower than in roots, indicating that small amounts of Pt was translocated upward and not retained in the above ground tissues. Our results point that either S. fruticosa has low Pt phytoextraction capacity of and/or Pt is mostly present as non-bioavailable forms.

The results presented in this study were discussed in Aveiro in terms of their implications on (i) the status of Pt contamination in the Tagus Estuarine/Salt Marsh sediments due to traffic-borne emissions; (ii) the influence of redox conditions and vegetation on the geochemical sedimentary behaviour of Pt; and (iii) the uptake of Pt by vegetation.

Carla is currently (Autumn 2012) working at Dartmouth College (Hanover NH USA) as a visiting researcher and hopes to complete her PhD in Autumn 2014.

Clara Almécija-Pereda

Marine Research Institute IIM-CSIC, Vigo, Spain

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Agro-ecological suitability assessment of Chinese Medicinal Yam under future climate change 2019-10-15

    Abstract

    Chinese Medicinal Yam (CMY) has been prescribed as medicinal food for thousand years in China by Traditional Chinese Medicine (TCM) practitioners. Its medical benefits include nourishing the stomach and spleen to improve digestion, replenishing lung and kidney, etc., according to the TCM literature. As living standard rises and public health awareness improves in recent years, the potential medicinal benefits of CMY have attracted increasing attention in China. It has been found that the observed climate change in last several decades, together with the change in economic structure, has driven significant shift in the pattern of the traditional CMY planting areas. To identify suitable planting area for CMY in the near future is critical for ensuring the quality and supply quantity of CMY, guiding the layout of CMY industry, and safeguarding the sustainable development of CMY resources for public health. In this study, we first collect 30-year records of CMY varieties and their corresponding phenology and agro-meteorological observations. We then consolidate these data and use them to enrich and update the eco-physiological parameters of CMY in the agro-ecological zone (AEZ) model. The updated CMY varieties and AEZ model are validated using the historical planting area and production under observed climate conditions. After the successful validation, we use the updated AEZ model to simulate the potential yield of CMY and identify the suitable planting regions under future climate projections in China. This study shows that regions with high ecological similarity to the genuine and core producing areas of CMY mainly distribute in eastern Henan, southeastern Hebei, and western Shandong. The climate suitability of these areas will be improved due to global warming in the next 50 years, and therefore, they will continue to be the most suitable CMY planting regions.

  • Application of stable isotopes and dissolved ions for monitoring landfill leachate contamination 2019-10-15

    Abstract

    We evaluated groundwater contamination by landfill leachate at a municipal landfill and characterized isotopic and hydrogeochemical evidence of the degradation and natural attenuation of buried organic matter at the study site. Dissolved ion content was generally much higher in the leachate than in the surrounding groundwater. The leachate was characterized by highly elevated bicarbonate and ammonium levels and a lack of nitrate and sulfate, indicating generation under anoxic conditions. Leachate δD and δ13CDIC values were much higher than those of the surrounding groundwater; some groundwater samples near the landfill showed a significant contamination by the leachate plume. Hydrochemical characteristics of the groundwater suggest that aquifer geology in the study area plays a key role in controlling the natural attenuation of leachate plumes in this oxygen-limited environment.

  • Lead transfer into the vegetation layer growing naturally in a Pb-contaminated site 2019-10-10

    Abstract

    The lead was one of the main elements in the glazes used to colour ceramic tiles. Due to its presence, ceramic sludge has been a source of environmental pollution since this dangerous waste has been often spread into the soil without any measures of pollution control. These contaminated sites are often located close to industrial sites in the peri-urban areas, thus representing a considerable hazard to the human and ecosystem health. In this study, we investigated the lead transfer into the vegetation layer (Phragmites australis, Salix alba and Sambucus nigra) growing naturally along a Pb-contaminated ditch bank. The analysis showed a different lead accumulation among the species and their plant tissues. Salix trees were not affected by the Pb contamination, possibly because their roots mainly develop below the contaminated deposit. Differently, Sambucus accumulated high concentrations of lead in all plant tissues and fruits, representing a potential source of biomagnification. Phragmites accumulated large amounts of lead in the rhizomes and, considering its homogeneous distribution on the site, was used to map the contamination. Analysing the Pb concentration within plant tissues, we got at the same time information about the spread, the history of the contamination and the relative risks. Finally, we discussed the role of natural recolonizing plants for the soil pollution mitigation and their capacity on decreasing soil erosion and water run-off.