SEGH Articles

Sedimentary geochemistry of platinum in intertidal salt marsh sediments of the Tagus River Estuary, Lisbon, Portugal

03 December 2012
Studies of platinum in intertidal sediments have highlighted a number of features of Pt dynamics in saltmarsh environments.

 

Clara Almécija-Pereda was joint oral presentation winner at the 9th ISEG meeting held in Aveiro Portugal in July 2012. Her studies of platinum in intertidal sediments have highlighted a number of features of Pt dynamics in saltmarsh environments, an element which has rarely been studied in the estuarine environment. In December 2010 she started a PhD in Marine Biogeochemistry Group in Marine Research Institute IIM-CSIC (Spanish Research Council) in Vigo, under the supervision of Dr. Antonio Cobelo-García and Dr. Juan Santos-Echeandía and in collaboration with IPMA (Portuguese Institute of Sea and Atmosphere).

In order to better understand the role of salt mash plants in the cycle of this element, sediment cores from vegetated and non-vegetated intertidal sediments of the Tagus Estuary (Lisbon, Portugal, SW Europe), which are subject to strong anthropogenic inputs, were studied. Sediments cores, leaves, stems and roots of Sarcocornia fruticosa were collected in two salt marsh areas and analysed for their Pt concentration. Pore-water was separated from the sediments and analysed for dissolved Pt. Auxiliary parameters – dissolved oxygen, redox potential, total dissolved Mn and Fe – were also determined. Depth profiles of Pt in non-vegetated sediments showed low concentrations ranging from 0.5 to 1.0 ng g-1. Since oxygen penetration depth in these sediments is restricted to a few millimetres the observed slight enhancement with depth suggests its retention as sulphides or associated with sulphide phases. In vegetated sediments, higher levels of Pt were found in the uppermost layers (up to 3ng.g-1). This increase was found in sediment layers containing higher root biomass, suggesting that Pt retention may derived from plant activity. The atmospheric – traffic-borne – input of Pt may also contribute to the higher values in the topmost sediment layer.

Plant roots exhibited lower Pt concentrations (0.2-0.9 ng g-1) than sediments indicating that Pt is not significantly sequestered in root tissues. The oxic condition of vegetated sediments due to the plant activity may stabilize Pt in the dissolved fraction, aided by its association with dissolved organic matter derived from root exudates. Levels in the leaves and stems (0.015-0.12ng.g-1) were up to one order of magnitude lower than in roots, indicating that small amounts of Pt was translocated upward and not retained in the above ground tissues. Our results point that either S. fruticosa has low Pt phytoextraction capacity of and/or Pt is mostly present as non-bioavailable forms.

The results presented in this study were discussed in Aveiro in terms of their implications on (i) the status of Pt contamination in the Tagus Estuarine/Salt Marsh sediments due to traffic-borne emissions; (ii) the influence of redox conditions and vegetation on the geochemical sedimentary behaviour of Pt; and (iii) the uptake of Pt by vegetation.

Carla is currently (Autumn 2012) working at Dartmouth College (Hanover NH USA) as a visiting researcher and hopes to complete her PhD in Autumn 2014.

Clara Almécija-Pereda

Marine Research Institute IIM-CSIC, Vigo, Spain

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • The society for environmental Geochemistry and health (SEGH): a retrospect 2019-02-22
  • Air quality and PM 10 -associated poly-aromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches 2019-02-19

    Abstract

    Diesel engine railway traffic causes atmosphere pollution due to the exhaust emission which may be harmful to the passengers as well as workers. In this study, the air quality and PM10 concentrations were evaluated around a railway station in Northeast India where trains are operated with diesel engines. The gaseous pollutant (e.g. SO2, NO2, and NH3) was collected and measured by using ultraviolet–visible spectroscopy. The advanced level characterizations of the PM10 samples were carried out by using ion chromatography, Fourier-transform infrared, X-ray diffraction, inductively coupled plasma optical emission spectrometry , X-ray photoelectron spectroscopy, field-emission scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy with energy-dispersive spectroscopy techniques to know their possible environmental contaminants. High-performance liquid chromatography technique was used to determine the concentration of polycyclic aromatic hydrocarbons to estimate the possible atmospheric pollution level caused by the rail traffic in the enclosure. The average PM10 concentration was found to be 262.11 µg m−3 (maximum 24 hour) which indicates poor air quality (AQI category) around the rail traffic. The statistical and air mass trajectory analysis was also done to know their mutual correlation and source apportionment. This study will modify traditional studies where only models are used to simulate the origins.

  • The geochemistry of geophagic material consumed in Onangama Village, Northern Namibia: a potential health hazard for pregnant women in the area 2019-02-18

    Abstract

    Ingestion of geophagic materials might affect human health and induce diseases by different ways. The purpose of this study is to determine the geochemical composition of geophagic material consumed especially by pregnant women in Onangama Village, Northern Namibia and to assess its possible health effects. X-ray fluorescence and inductively coupled plasma mass spectrometry were used in order to determine the major, and trace elements as well as anions concentrations of the consumed material. The geochemical analysis revealed high concentrations of aluminium (Al), calcium (Ca), iron (Fe), magnesium (Mg), manganese (Mn), potassium (K), sodium (Na), and silica (Si); and trace elements including arsenic (As), chromium (Cr), mercury (Hg), nickel (Ni) and vanadium (V) as well as sulphate (SO42−), nitrate (NO3), and nitrite (NO2) anions comparing to the recommended daily allowance for pregnant women. The pH for some of the studied samples is alkaline, which might increase the gastrointestinal tract pH (pH < 2) and cause a decrease in the bioavailability of elements. The calculated health risk index (HRI > 1) revealed that Al and Mn might be a potential risk for human consumption. Based on the results obtained from the geochemical analysis, the consumption of the studied material might present a potential health risk to pregnant women including concomitant detrimental maternal and foetal effects.