SEGH Articles

Soil: an important part of a healthy diet?

20 May 2011
Iodine is essential for healthy human life, and is taken up by crops from the soil. However, current research shows that the soil itself has an important part to play in determining how much iodine reaches our food.

Iodine is essential for healthy human life, and insufficient intake can result in reduced mental and physical well-being. In some places, however, even when there is plenty of iodine present in soil, there is still a deficiency in food, crops and grazing pasture for livestock, with social and economic impacts for affected communities.

Cows rely on sufficient iodine intake from the pasture they graze, but in some areas require dietary supplements to maintain health.

A current Nottingham-based PhD project is focussing on how the interaction between soil and iodine affects the availability of iodine to plants, and hence how the soil influences the amount of iodine entering the food chain. Research is being carried out using soils from Northern Ireland, mainly from pasture sites, to investigate how iodine, washed into soil by rain, behaves when it comes into contact with the earth: is it leached through the topsoil layer to depths inaccessible to roots? Is it locked away onto solid soil particles? Does it stay within the soil moisture, to potentially be taken up by plants? Current understanding is that all of these scenarios occur to some extent, and the properties of the individual soil determine ultimately how much iodine is taken up by the plants growing on it.

Soils have a range of properties including texture and composition which affect how iodine behaves once it is in contact with them.

A map of total soil iodine concentrations in Northern Ireland has recently been produced by the Geological Survey of Northern Ireland as part of the Tellus project (Smyth, D. and C. C. Johnson (2011). "Distribution of iodine in soils of Northern Ireland." Geochemistry-Exploration Environment Analysis 11(1): 25-39). Interpretation of the map revealed that although iodine concentrations in surface soils of Northern Ireland are generally high (on average around 10 mg kg-1), the concentration range was large (0.5 - 600 mg kg-1) and depended strongly on the characteristics of the soil. Soils rich in organic matter (e.g. peat) tended to retain most iodine. Additionally, a coastal fringe of particularly high iodine concentrations was identified and linked to relatively high marine concentrations of iodine. Within the last decade the British Geological Survey (BGS) has investigated the concentration of iodine in soils around the world, including in China, Morocco and Argentina. These projects have confirmed that low soil iodine concentration can result in whole communities being affected by iodine deficiency diseases, but have also shown that iodine deficiency can be a problem in areas where soil iodine concentration is not particularly low.  

 

This PhD research, jointly sponsored by the University of Nottingham and the BGS University Funding Initiative, builds on existing knowledge of iodine concentration in soils of Northern Ireland and looks deeper into how soil itself can affect the availability of iodine and why the problem does not occur everywhere. The ultimate aim is to create a computer model to predict where iodine deficiency diseases are likely to occur, allowing intervention measures to be planned for the places where they are most needed.

 

Soil and grass samples were collected in Northern Ireland...

 

 

 

 

...where careful recording of soil properties including colour and texture was required.

 

 

For further information about this project, please email Hannah Smith on plxhes@nottingham.ac.uk.

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Exposure to respirable and fine dust particle over North-Central India: chemical characterization, source interpretation, and health risk analysis 2019-12-10

    Abstract

    This study enhances the understanding of the particulate matters (PM2.5 and PM10) and their physical and chemical behavior over the Taj Mahal, Agra, in North-Central India. The mass concentration was determined, and the shape and size of the particles and chemical characterizations have been carried out using SEM–EDX. The high level and significant variation of PM10 (162.2 µg m−3) and PM2.5 (83.9 µg m−3) were observed. The exceedance factor of the present study region is in critical and moderate condition. Morphological characterization reveals the particles of different shapes and sizes, while elemental analysis shows the presence of Si, Al, Fe, Ca, K, Cl, Mg, Na, Cu, and Zn. The dominance of Si indicated the contribution of natural sources, i.e., soil over this region. Three significant sources, viz. soil/road paved dust/vegetative emissions, vehicular/industrial emissions, and intermingling of dust and combustion particles, have been identified using principal component analysis over North-Central India. Health risk analysis of particulate matter identified carcinogenic and non-carcinogenic metals in the present study, which comes in contact with human beings during inhalation. The non-carcinogenic risk was much higher than the acceptable level. The high carcinogenic risks were found in Zn in PM10 and Cu in PM2.5 for both children and adults.

  • Integration of remote sensing data and in situ measurements to monitor the water quality of the Ismailia Canal, Nile Delta, Egypt 2019-12-10

    Abstract

    The Ismailia Canal is one of the most important tributaries of the River Nile in Egypt. It is threatened by extinction from several sources of pollution, in addition to the intersection and nearness of the canal path with the Bilbayes drain and the effluent from the two largest conventional wastewater treatment plants in Greater Cairo. In this study, the integration of remote sensing and geospatial information system techniques is carried out to enhance the contribution of satellite data in water quality management in the Ismailia Canal. A Landsat-8 operational land imager image dated 2018 was used to detect the land use and land cover changes in the area of study, in addition to retrieving various spectral band ratios. Statistical correlations were applied among the extracted band ratios and the measured in situ water quality parameters. The most appropriate spectral band ratios were extracted from the NIR band (near infrared/blue), which showed a significant correlation with eight water quality metrics (CO3, BOD5, COD, TSS, TDS, Cl, NH4, and fecal coliform bacteria). A linear regression model was then established to predict information about these important water quality parameters along Ismailia Canal. The developed models, using linear regression equations for this study, give a set of powerful decision support frameworks with statistical tools to provide comprehensive, integrated views of surface water quality information under similar circumstances.

  • Geophagy among East African Chimpanzees: consumed soils provide protection from plant secondary compounds and bioavailable iron 2019-12-01

    Abstract

    Geophagy, the intentional consumption of earth materials, has been recorded in humans and other animals. It has been hypothesized that geophagy is an adaptive behavior, and that clay minerals commonly found in eaten soil can provide protection from toxins and/or supplement micronutrients. To test these hypotheses, we monitored chimpanzee geophagy using camera traps in four permanent sites at the Budongo Forest Reserve, Uganda, from October 2015–October 2016. We also collected plants, and soil chimpanzees were observed eating. We analyzed 10 plant and 45 soil samples to characterize geophagic behavior and geophagic soil and determine (1) whether micronutrients are available from the soil under physiological conditions and if iron is bioavailable, (2) the concentration of phenolic compounds in plants, and (3) if consumed soils are able to adsorb these phenolics. Chimpanzees ate soil and drank clay-infused water containing 1:1 and 2:1 clay minerals and > 30% sand. Under physiological conditions, the soils released calcium, iron, and magnesium. In vitro Caco-2 experiments found that five times more iron was bioavailable from three of four soil samples found at the base of trees. Plant samples contained approximately 60 μg/mg gallic acid equivalent. Soil from one site contained 10 times more 2:1 clay minerals, which were better at removing phenolics present in their diet. We suggest that geophagy may provide bioavailable iron and protection from phenolics, which have increased in plants over the last 20 years. In summary, geophagy within the Sonso community is multifunctional and may be an important self-medicative behavior.