SEGH Articles

Spatial distribution of Pb, Cd and Cr concentrations in moss transplants from urban recreational areas in Lisbon, Portugal

03 December 2012
Metal concentrations in moss were used to assess the contribution of atmospheric pollution to the geochemistry of soil and ground-level dust, and discriminate urban pollution sources.

Sofia Bartolomeu is currently a final year Master student in Meteorology and Oceanography Physics at University of Aveiro, Portugal. She was a Poster Winner at the 9th ISEG meeting in Aveiro, Portugal in July. She is currently working on the “Geochemical survey of Lisbon urban soils” project at the Geosciences Department of the University of Aveiro, supervised by Dr. Paula Marinho. The main aim of her study was to report on spatial patterns for some metal concentrations in moss transplants that were exposed to the urban ambient air in public recreational areas in Lisbon. Metal concentrations in the moss were used to assess the contribution of atmospheric pollution to the geochemistry of soil and ground-level dust, and discriminate urban pollution sources.

Owing to their ability to accumulate heavy metals, mosses are especially suitable to monitor heavy metal airborne pollution. Heavy metals are taken up very fast due to the lack of an epidermis and a cuticle, and they have a large surface-to-weight ratio.

This study presents results from a project entitled “Geochemical survey of Lisbon urban soils: a baseline for future human health studies”, and the main aims are (1) to report on spatial patterns for Pb, Cd and Cr concentrations in moss transplants from public recreational areas in Lisbon; (2) to compare such patterns with those of soil and ground-level dust. Fifty one topsoil and ground-level dust samples were collected in playgrounds, schoolyards, urban parks, public gardens, road-side and airport of Lisbon. At each site, 1 uncontaminated moss transplant was fixed to a horizontal tree limb, which remained in situ for a period of 6 months. Only 44 moss samples were recovered from site. The selected moss species was the Hypnum cupressiforme Hedw and the green part was used for analysis of Pb, Cd and Cr by ICP-MS.

 

For Pb, the results show that concentrations are high, range from 7.2-75.1 mg kg-1 and the higher values occur in the older part of the city. Lead emissions are mainly related to traffic and the physiographic characteristics of the old city explain the higher Pb concentrations in the moss. The element has a similar spatial distribution in soils and dusts, suggesting that airborne Pb-particles settle in the topsoil. For Cd, the results show that concentrations are low, range from 0.08-0.44 mg kg-1 and the spatial distribution is irregular, indicating point sources. However, the airport moss samples have the highest Cd concentrations. Also soil and dust samples form the airport have the highest Cd concentrations, which suggest that air-traffic is a source of Cd in the city. For Cr, the results show that concentrations range from 1.6-8.9 mg kg-1 and the higher values occur in the old city. Soils and dust show different distribution patterns, perhaps due to the fact that in the city Cr has an important geogenic source. 

In conclusion and despite the fact that by its location on the Atlantic coast and winds regime, high levels of pollutants are uncommon in Lisbon, the biomonitoring survey indicates that Pb emissions are probably traffic related, are still significant and have an higher environmental impact in the old city where the housing density is higher, the streets are narrow and have strong slopes, and the traffic is quite intense. Concentrations of Cd and Cr are quite lower and metal-laden airborne particles do not seem to be a significant source to the urban soils.

 

Sofia Bartolomeu

Physics Department, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal, 1. sofiabartolomeu@ua.pt

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Agro-ecological suitability assessment of Chinese Medicinal Yam under future climate change 2019-10-15

    Abstract

    Chinese Medicinal Yam (CMY) has been prescribed as medicinal food for thousand years in China by Traditional Chinese Medicine (TCM) practitioners. Its medical benefits include nourishing the stomach and spleen to improve digestion, replenishing lung and kidney, etc., according to the TCM literature. As living standard rises and public health awareness improves in recent years, the potential medicinal benefits of CMY have attracted increasing attention in China. It has been found that the observed climate change in last several decades, together with the change in economic structure, has driven significant shift in the pattern of the traditional CMY planting areas. To identify suitable planting area for CMY in the near future is critical for ensuring the quality and supply quantity of CMY, guiding the layout of CMY industry, and safeguarding the sustainable development of CMY resources for public health. In this study, we first collect 30-year records of CMY varieties and their corresponding phenology and agro-meteorological observations. We then consolidate these data and use them to enrich and update the eco-physiological parameters of CMY in the agro-ecological zone (AEZ) model. The updated CMY varieties and AEZ model are validated using the historical planting area and production under observed climate conditions. After the successful validation, we use the updated AEZ model to simulate the potential yield of CMY and identify the suitable planting regions under future climate projections in China. This study shows that regions with high ecological similarity to the genuine and core producing areas of CMY mainly distribute in eastern Henan, southeastern Hebei, and western Shandong. The climate suitability of these areas will be improved due to global warming in the next 50 years, and therefore, they will continue to be the most suitable CMY planting regions.

  • Application of stable isotopes and dissolved ions for monitoring landfill leachate contamination 2019-10-15

    Abstract

    We evaluated groundwater contamination by landfill leachate at a municipal landfill and characterized isotopic and hydrogeochemical evidence of the degradation and natural attenuation of buried organic matter at the study site. Dissolved ion content was generally much higher in the leachate than in the surrounding groundwater. The leachate was characterized by highly elevated bicarbonate and ammonium levels and a lack of nitrate and sulfate, indicating generation under anoxic conditions. Leachate δD and δ13CDIC values were much higher than those of the surrounding groundwater; some groundwater samples near the landfill showed a significant contamination by the leachate plume. Hydrochemical characteristics of the groundwater suggest that aquifer geology in the study area plays a key role in controlling the natural attenuation of leachate plumes in this oxygen-limited environment.

  • Lead transfer into the vegetation layer growing naturally in a Pb-contaminated site 2019-10-10

    Abstract

    The lead was one of the main elements in the glazes used to colour ceramic tiles. Due to its presence, ceramic sludge has been a source of environmental pollution since this dangerous waste has been often spread into the soil without any measures of pollution control. These contaminated sites are often located close to industrial sites in the peri-urban areas, thus representing a considerable hazard to the human and ecosystem health. In this study, we investigated the lead transfer into the vegetation layer (Phragmites australis, Salix alba and Sambucus nigra) growing naturally along a Pb-contaminated ditch bank. The analysis showed a different lead accumulation among the species and their plant tissues. Salix trees were not affected by the Pb contamination, possibly because their roots mainly develop below the contaminated deposit. Differently, Sambucus accumulated high concentrations of lead in all plant tissues and fruits, representing a potential source of biomagnification. Phragmites accumulated large amounts of lead in the rhizomes and, considering its homogeneous distribution on the site, was used to map the contamination. Analysing the Pb concentration within plant tissues, we got at the same time information about the spread, the history of the contamination and the relative risks. Finally, we discussed the role of natural recolonizing plants for the soil pollution mitigation and their capacity on decreasing soil erosion and water run-off.