SEGH Articles

Spatial distribution of Pb, Cd and Cr concentrations in moss transplants from urban recreational areas in Lisbon, Portugal

03 December 2012
Metal concentrations in moss were used to assess the contribution of atmospheric pollution to the geochemistry of soil and ground-level dust, and discriminate urban pollution sources.

Sofia Bartolomeu is currently a final year Master student in Meteorology and Oceanography Physics at University of Aveiro, Portugal. She was a Poster Winner at the 9th ISEG meeting in Aveiro, Portugal in July. She is currently working on the “Geochemical survey of Lisbon urban soils” project at the Geosciences Department of the University of Aveiro, supervised by Dr. Paula Marinho. The main aim of her study was to report on spatial patterns for some metal concentrations in moss transplants that were exposed to the urban ambient air in public recreational areas in Lisbon. Metal concentrations in the moss were used to assess the contribution of atmospheric pollution to the geochemistry of soil and ground-level dust, and discriminate urban pollution sources.

Owing to their ability to accumulate heavy metals, mosses are especially suitable to monitor heavy metal airborne pollution. Heavy metals are taken up very fast due to the lack of an epidermis and a cuticle, and they have a large surface-to-weight ratio.

This study presents results from a project entitled “Geochemical survey of Lisbon urban soils: a baseline for future human health studies”, and the main aims are (1) to report on spatial patterns for Pb, Cd and Cr concentrations in moss transplants from public recreational areas in Lisbon; (2) to compare such patterns with those of soil and ground-level dust. Fifty one topsoil and ground-level dust samples were collected in playgrounds, schoolyards, urban parks, public gardens, road-side and airport of Lisbon. At each site, 1 uncontaminated moss transplant was fixed to a horizontal tree limb, which remained in situ for a period of 6 months. Only 44 moss samples were recovered from site. The selected moss species was the Hypnum cupressiforme Hedw and the green part was used for analysis of Pb, Cd and Cr by ICP-MS.

 

For Pb, the results show that concentrations are high, range from 7.2-75.1 mg kg-1 and the higher values occur in the older part of the city. Lead emissions are mainly related to traffic and the physiographic characteristics of the old city explain the higher Pb concentrations in the moss. The element has a similar spatial distribution in soils and dusts, suggesting that airborne Pb-particles settle in the topsoil. For Cd, the results show that concentrations are low, range from 0.08-0.44 mg kg-1 and the spatial distribution is irregular, indicating point sources. However, the airport moss samples have the highest Cd concentrations. Also soil and dust samples form the airport have the highest Cd concentrations, which suggest that air-traffic is a source of Cd in the city. For Cr, the results show that concentrations range from 1.6-8.9 mg kg-1 and the higher values occur in the old city. Soils and dust show different distribution patterns, perhaps due to the fact that in the city Cr has an important geogenic source. 

In conclusion and despite the fact that by its location on the Atlantic coast and winds regime, high levels of pollutants are uncommon in Lisbon, the biomonitoring survey indicates that Pb emissions are probably traffic related, are still significant and have an higher environmental impact in the old city where the housing density is higher, the streets are narrow and have strong slopes, and the traffic is quite intense. Concentrations of Cd and Cr are quite lower and metal-laden airborne particles do not seem to be a significant source to the urban soils.

 

Sofia Bartolomeu

Physics Department, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal, 1. sofiabartolomeu@ua.pt

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Editorial 2018-12-11
  • Chemical fractionation of heavy metals in fine particulate matter and their health risk assessment through inhalation exposure pathway 2018-12-11

    Abstract

    Samples of PM2.5 were collected from an urban area close to a national highway in Agra, India and sequentially extracted into four different fractions: water soluble (F1), reducible (F2), oxidizable (F3) and residual fraction (F4) for chemical fractionation of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), nickel (Ni) and lead (Pb). The metals were analyzed by inductively coupled plasma optical emission spectroscopy in each fraction. The average mass concentration of PM2.5 was 93 ± 24 μg m−3.The total concentrations of Cr, Pb, Ni, Co, As and Cd in fine particle were 192 ± 54, 128 ± 25, 108 ± 34, 36 ± 6, 35 ± 5 and 8 ± 2 ng m−3, respectively. Results indicated that Cd and Co had the most bioavailability indexes. Risk Assessment Code and contamination factors were calculated to assess the environmental risk. The present study evaluated the potential Pb hazard to young children using the Integrated Exposure Uptake Biokinetic Model. From the model, the probability density of PbB (blood lead level) revealed that at the prevailing atmospheric concentration, 0.302 children are expected to have PbB concentrations exceeding 10 μg dL−1 and an estimated IQ (intelligence quotient) loss of 1.8 points. The predicted blood Pb levels belong to Group 3 (PbB < 5 μg dL−1). Based on the bioavailable fractions, carcinogenic and non-carcinogenic risks via inhalation exposure were assessed for infants, toddlers, children, males and females. The hazard index for potential toxic metals was 2.50, which was higher than the safe limit (1). However, the combined carcinogenic risk for infants, toddlers, children, males and females was marginally higher than the precautionary criterion (10−6).

  • Effects of steel slag and biochar amendments on CO 2 , CH 4 , and N 2 O flux, and rice productivity in a subtropical Chinese paddy field 2018-12-07

    Abstract

    Steel slag, a by-product of the steel industry, contains high amounts of active iron oxide and silica which can act as an oxidizing agent in agricultural soils. Biochar is a rich source of carbon, and the combined application of biochar and steel slag is assumed to have positive impacts on soil properties as well as plant growth, which are yet to be validated scientifically. We conducted a field experiment for two rice paddies (early and late paddy) to determine the individual and combined effects of steel slag and biochar amendments on CO2, CH4, and N2O emission, and rice productivity in a subtropical paddy field of China. The amendments did not significantly affect rice yield. It was observed that CO2 was the main greenhouse gas emitted from all treatments of both paddies. Steel slag decreased the cumulative CO2 flux in the late paddy. Biochar as well as steel slag + biochar treatment decreased the cumulative CO2 flux in the late paddy and for the complete year (early and late paddy), while steel slag + biochar treatment also decreased the cumulative CH4 flux in the early paddy. The biochar, and steel slag + biochar amendments decreased the global warming potential (GWP). Interestingly, the cumulative annual GWP was lower for the biochar (55,422 kg CO2-eq ha−1), and steel slag + biochar (53,965 kg CO2-eq ha−1) treatments than the control (68,962 kg CO2-eq ha−1). Total GWP per unit yield was lower for the combined application of steel slag + biochar (8951 kg CO2-eq Mg−1 yield) compared to the control (12,805 kg CO2-eq Mg−1 yield). This study suggested that the combined application of steel slag and biochar could be an effective long-term strategy to reduce greenhouse gases emission from paddies without any detrimental effect on the yield.