SEGH Articles

Spatial distribution of Pb, Cd and Cr concentrations in moss transplants from urban recreational areas in Lisbon, Portugal

03 December 2012
Metal concentrations in moss were used to assess the contribution of atmospheric pollution to the geochemistry of soil and ground-level dust, and discriminate urban pollution sources.

Sofia Bartolomeu is currently a final year Master student in Meteorology and Oceanography Physics at University of Aveiro, Portugal. She was a Poster Winner at the 9th ISEG meeting in Aveiro, Portugal in July. She is currently working on the “Geochemical survey of Lisbon urban soils” project at the Geosciences Department of the University of Aveiro, supervised by Dr. Paula Marinho. The main aim of her study was to report on spatial patterns for some metal concentrations in moss transplants that were exposed to the urban ambient air in public recreational areas in Lisbon. Metal concentrations in the moss were used to assess the contribution of atmospheric pollution to the geochemistry of soil and ground-level dust, and discriminate urban pollution sources.

Owing to their ability to accumulate heavy metals, mosses are especially suitable to monitor heavy metal airborne pollution. Heavy metals are taken up very fast due to the lack of an epidermis and a cuticle, and they have a large surface-to-weight ratio.

This study presents results from a project entitled “Geochemical survey of Lisbon urban soils: a baseline for future human health studies”, and the main aims are (1) to report on spatial patterns for Pb, Cd and Cr concentrations in moss transplants from public recreational areas in Lisbon; (2) to compare such patterns with those of soil and ground-level dust. Fifty one topsoil and ground-level dust samples were collected in playgrounds, schoolyards, urban parks, public gardens, road-side and airport of Lisbon. At each site, 1 uncontaminated moss transplant was fixed to a horizontal tree limb, which remained in situ for a period of 6 months. Only 44 moss samples were recovered from site. The selected moss species was the Hypnum cupressiforme Hedw and the green part was used for analysis of Pb, Cd and Cr by ICP-MS.

 

For Pb, the results show that concentrations are high, range from 7.2-75.1 mg kg-1 and the higher values occur in the older part of the city. Lead emissions are mainly related to traffic and the physiographic characteristics of the old city explain the higher Pb concentrations in the moss. The element has a similar spatial distribution in soils and dusts, suggesting that airborne Pb-particles settle in the topsoil. For Cd, the results show that concentrations are low, range from 0.08-0.44 mg kg-1 and the spatial distribution is irregular, indicating point sources. However, the airport moss samples have the highest Cd concentrations. Also soil and dust samples form the airport have the highest Cd concentrations, which suggest that air-traffic is a source of Cd in the city. For Cr, the results show that concentrations range from 1.6-8.9 mg kg-1 and the higher values occur in the old city. Soils and dust show different distribution patterns, perhaps due to the fact that in the city Cr has an important geogenic source. 

In conclusion and despite the fact that by its location on the Atlantic coast and winds regime, high levels of pollutants are uncommon in Lisbon, the biomonitoring survey indicates that Pb emissions are probably traffic related, are still significant and have an higher environmental impact in the old city where the housing density is higher, the streets are narrow and have strong slopes, and the traffic is quite intense. Concentrations of Cd and Cr are quite lower and metal-laden airborne particles do not seem to be a significant source to the urban soils.

 

Sofia Bartolomeu

Physics Department, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal, 1. sofiabartolomeu@ua.pt

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil 2017-04-19

    Abstract

    A 30-day incubation experiment was conducted using a heavy metal-contaminated mined soil amended with date palm feedstock (FS) and its derivative biochars (BCs) at three pyrolysis temperatures of 300 (BC-300), 500 (BC-500), and 700 °C (BC-700) with different application rates (0.0, 5, 15, and 30 g kg−1) to investigate their short-term effects on soil respiration (CO2–C efflux), microbial biomass carbon (MBC), soil organic carbon (SOC), mobile fraction of heavy metals (Cd, Cu, Pb, Zn, Mn, and Fe), pH, and electrical conductivity (EC). The results showed that FS and BC-300 with increasing addition rate significantly reduced soil pH, whereas SOC, CO2–C efflux, and soil MBC were increased compared to the control. On the contrary, BC-500 and BC-700 increased soil pH at early stage of incubation and have small or no effects on SOC, CO2–C efflux, and MBC. Based on the results, the date palm biochars exhibited much lower cumulative CO2–C efflux than feedstock, even with low-temperature biochar, indicating that BCs have C sequestration potential. Applying BC-700 at 15 and 30 g kg−1 significantly reduced cumulative CO2–C efflux by 21.8 and 45.4% compared to the control, respectively. The incorporation of FS into contaminated soil significantly increased the mobile content of Cd and Mn, but decreased the mobile content of Cu. However, BC-300 significantly reduced the mobile content of Cd, Cu, Pb, and Zn. It could be concluded that low-temperature biochar could be used as a soil amendment for reducing heavy metal mobility in mining contaminated soil in addition to minimize soil CO2–C efflux.

  • Historical record of anthropogenic polycyclic aromatic hydrocarbons in a lake sediment from the southern Tibetan Plateau 2017-04-17

    Abstract

    High-altitude lake sediments can be used as natural archives to reconstruct the history of pollutants. In this work, the temporal distribution of polycyclic aromatic hydrocarbons (PAHs) was determined in a sediment core collected from the southern Tibetan Plateau (TP), which was dated by using the 210Pb dating method and validated with the 137Cs fallout peak. The concentrations of the anthropogenic PAHs (Σ8PAH) in the sediment core ranged from 0.83 to 12 ng/g dw, and the fluxes of the Σ8PAH were in the range of 2.1–27 g/cm2/year. The temporal variations in the concentration and input flux of anthropogenic PAHs were low with little variability before the 1950s, and then gradually increased from the 1950s to the 1980s, and an accelerated increase was observed after the early 1980s. The content of total organic carbon played an insignificant role in affecting the time trends of PAHs in the sediment core. Diagnostic concentration fractions of PAH components indicate PAHs in the lake sediment of the southern TP which are mainly from biomass burning and/or from long-range atmospheric transport.

  • Determination of the potential implementation impact of 2016 ministry of environmental protection generic assessment criteria for potentially contaminated sites in China 2017-04-12

    Abstract

    The Ministry of Environmental Protection of China issued a 3rd draft edition of risk-based Generic Assessment Criteria (the MEP-GAC) in March 2016. Since these will be the first authoritative GAC in China, their implementation is likely to have a significant impact on China’s growing contaminated land management sector. This study aims to determine the potential implementation impact of the MEP-GAC through an in-depth analysis of the management context, land use scenarios, health criteria values adopted and exposure pathways considered. The MEP-GAC have been proposed for two broad categories of land use scenarios for contaminated land risk assessment, and these two categories of land use scenarios need to be further delved, and a MEP-GAC for Chinese cultivated land scenario ought to be developed, to ensure human health protection of Chinese farmers. The MEP-GAC have adopted 10−6 as the acceptable lifetime cancer risk, given the widespread extent and severe level of land contamination in China, consideration should be given to the decision on excess lifetime cancer risk of 10−5. During risk assessment process in practice, it is better to review the 20% TDI against local circumstances to determine their suitability before adopting it. The MEP-GAC are based on a SOM value of 1%, for regions with particularly high SOM, it might be necessary to develop regional GAC, due to SOM’s significant impact on the GAC developed. An authoritative risk assessment model developed based on HJ25.3-2014 would help facilitate the DQRA process in practice. The MEP-GAC could better reflect the likely exposures of China’s citizens due to vapour inhalation by using characteristics of Chinese exposure scenarios, including China-generic building stock, as inputs into the Johnson and Ettinger model as opposed to adoption of the US EPA parameters. The MEP-GAC once implemented will set the trajectory for the development of the investigation, assessment and remediation of land contamination for years.