SEGH Articles

Student led remediation study of Manitoban Gold mine

21 March 2011
Jill Maxwell was the joint winner of the Hemphill prize for best oral presentation at Galway SEGH 2010. She describes her work on the remediation of arsenic contamination by a natural wetland at New Britiannia Mine, Manitoba.

A study at the University of Manitoba investigated the effectiveness of a natural wetland as a remediation system for arsenic contamination derived from mine waste at New Britannia Mine (NBM), Snow Lake, Manitoba, Canada. At this deposit, gold is associated with arsenopyrite which is finely ground and treated with cyanide during processing. Subsequent oxidation of the arsenopyrite in the mine waste is the primary cause of arsenic contamination at the mine site.

Gold was extracted from arsenic-rich ore bodies in Snow Lake, by Nor-Acme Mine from 1949 to 1958 and then by NBM from 1995 to 2002. Nor-Acme left two major sources of arsenic contamination on the mine property, a small tailings area and the arsenopyrite residue stockpile (ARS). Concentrated residue was stockpiled in the ARS in hopes of finding economical means to recover the remaining refractory gold contained in the residue. A later attempt to extract gold from the residue through use of a lined leach pad added to the contamination. Although NBM capped the ARS and revegetated the area of the leach pad in 2000, elevated arsenic concentrations (up to 13 mg/L) have been detected in surface water in a wetland runoff area (RA) on the mine property. These values are well above the World Health Organization guideline of 0.001 mg/L. Water from the RA flows through a wetland toward Snow Lake, the source of drinking water for the Town.

A biogeochemical survey was employed to assess the passage of arsenic from the RA down the flow path toward Snow Lake. The study aimed to identify the distribution of arsenic and iron between surface water, soil and aquatic plants along the flow path, and to determine the mechanism for arsenic sequestration by plants and soil in the wetland. Surface water, soil and common cattail and water sedge plants were collected for total geochemical analyses by ICP-MS. Plants were separated into samples of roots, live shoots and dead shoots. Additional plant samples were squeezed by hydraulic press to extract fluids contained in cell vacuoles. Plant vacuoles and solid envelopes were then separately analyzed for total arsenic using ICP-MS. Root sections were prepared for electron microprobe (EMP) imaging and element mapping of arsenic and iron. In the field, surface water was passed through strong cation and strong anion exchange cartridges to separately retain As(III), As(V), MMA and DMA. Following elution in the laboratory the separate aliquots were analyzed for total arsenic.

Results of the flow path survey revealed the greatest fraction of arsenic in the RA was sequestered in organic soil (~ 4000 mg/kg), followed by plant roots (~ 900 mg/kg in sedge, 800 mg/kg in cattail), dead shoots (~ 800 mg/kg in sedge, 3 mg/kg in cattail), live shoots (~ 40 mg/kg in sedge, 3 mg/kg in cattail) and surface water (~ 1 mg/kg). Total geochemical analyses indicated that arsenic in the system is commonly associated with iron in all sample media. In surface water, arsenate is prevalent over arsenite and ~50% of arsenic existed in a methylated form. Separate analysis of cell vacuoles and envelopes and EMP element mapping showed arsenic to be sequestered with iron within in the cell walls of sedge and cattail roots and shoots.

The study indicated that a natural wetland can be very efficient at sequestering arsenic, reducing the environmentally available concentration by a factor of ten within 200 m and reducing concentrations in surface water well below international guidelines. Understanding the factors controlling sequestration of trace elements and heavy metals in wetlands can prove valuable in efforts to remediate environments influenced by mining and characterizing risk for the remobilization of sequestered elements.

Jill Maxwell, Barbara Sherriff, Elena Khozhina, Department of Geological Sciences, University of Manitoba, Winnipeg, MB, Canada

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Characteristics of PM 2.5 , CO 2 and particle-number concentration in mass transit railway carriages in Hong Kong 2017-08-01

    Abstract

    Fine particulate matter (PM2.5) levels, carbon dioxide (CO2) levels and particle-number concentrations (PNC) were monitored in train carriages on seven routes of the mass transit railway in Hong Kong between March and May 2014, using real-time monitoring instruments. The 8-h average PM2.5 levels in carriages on the seven routes ranged from 24.1 to 49.8 µg/m3, higher than levels in Finland and similar to those in New York, and in most cases exceeding the standard set by the World Health Organisation (25 µg/m3). The CO2 concentration ranged from 714 to 1801 ppm on four of the routes, generally exceeding indoor air quality guidelines (1000 ppm over 8 h) and reaching levels as high as those in Beijing. PNC ranged from 1506 to 11,570 particles/cm3, lower than readings in Sydney and higher than readings in Taipei. Correlation analysis indicated that the number of passengers in a given carriage did not affect the PM2.5 concentration or PNC in the carriage. However, a significant positive correlation (p < 0.001, R 2 = 0.834) was observed between passenger numbers and CO2 levels, with each passenger contributing approximately 7.7–9.8 ppm of CO2. The real-time measurements of PM2.5 and PNC varied considerably, rising when carriage doors opened on arrival at a station and when passengers inside the carriage were more active. This suggests that air pollutants outside the train and passenger movements may contribute to PM2.5 levels and PNC. Assessment of the risk associated with PM2.5 exposure revealed that children are most severely affected by PM2.5 pollution, followed in order by juveniles, adults and the elderly. In addition, females were found to be more vulnerable to PM2.5 pollution than males (p < 0.001), and different subway lines were associated with different levels of risk.

  • Comparison of chemical compositions in air particulate matter during summer and winter in Beijing, China 2017-08-01

    Abstract

    The development of industry in Beijing, the capital of China, particularly in last decades, has caused severe environmental pollution including particulate matter (PM), dust–haze, and photochemical smog, which has already caused considerable harm to local ecological environment. Thus, in this study, air particle samples were continuously collected in August and December, 2014. And elements (Si, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Cd, Ba, Pb and Ti) and ions ( \({\text{NO}}_{3}^{-}\) , \({\text{SO}}_{4}^{2-}\) , F, Cl, Na+, K+, Mg2+, Ca2+ and \({\text{NH}}_{4}^{+}\) ) were analyzed by inductively coupled plasma mass spectrometer and ion chromatography. According to seasonal changes, discuss the various pollution situations in order to find possible particulate matter sources and then propose appropriate control strategies to local government. The results indicated serious PM and metallic pollution in some sampling days, especially in December. Chemical Mass Balance model revealed central heating activities, road dust and vehicles contribute as main sources, account for 5.84–32.05 % differently to the summer and winter air pollution in 2014.

  • Annual ambient atmospheric mercury speciation measurement from Longjing, a rural site in Taiwan 2017-08-01

    Abstract

    The main purpose of this study was to monitor ambient air particulates and mercury species [RGM, Hg(p), GEM and total mercury] concentrations and dry depositions over rural area at Longjing in central Taiwan during October 2014 to September 2015. In addition, passive air sampler and knife-edge surrogate surface samplers were used to collect the ambient air mercury species concentrations and dry depositions, respectively, in this study. Moreover, direct mercury analyzer was directly used to detect the mercury Hg(p) and RGM concentrations. The result indicated that: (1) The average highest RGM, Hg(p), GEM and total mercury concentrations, and dry depositions were observed in January, prevailing dust storm occurred in winter season was the possible major reason responsible for the above findings. (2) The highest average RGM, Hg(p), GEM and total mercury concentrations, dry depositions and velocities were occurred in winter. This is because that China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. (3) The results indicated that the total mercury ratios of Kaohsiung to that of this study were 5.61. This is because that Kaohsiung has the largest industry density (~60 %) in Taiwan. (4) the USA showed average lower mercury species concentrations when compared to those of the other world countries. The average ratios of China/USA values were 89, 76 and 160 for total mercury, RGM and Hg(p), respectively, during the years of 2000–2012.