SEGH Articles

Studying the effects on soil organic matter of wildfires in central Portugal

01 January 2013
The main objective of this study is testing the efficacy of pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) as a fast analytical technique to detect wildfire-induced molecular alterations of the SOM in Mediterranean Leptosols.


Sílvia Regina Marques Faria, is a PhD student at the Universidade de Aveiro http:// undertaking a project entitled “WildFIRE effects on forest Soil Organic Matter stocks and losses by runoff”. She was a joint poster winner at the 9th ISEG meeting in Aveiro in July 2012. Her work is in collaboration with (IST-ITN), Sacavém, Portugal and (IRNAS-CSIC), Seville, Spain.

In Mediterranean ecosystems, forest fires are a common phenomenon and widely considered to be the main factor of disturbance. In the case of the Mediterranean Basin, the Iberian Peninsula has the highest risk of wildfire occurrence, and certainly in relative terms Portugal is affected most by wildfires, devastating on average 100,000 ha each year and dramatically larger areas in dry years like 2003 and 2005.

Wildfires result in the transformation of vegetation and litter, leaving charred residues, and thus influence the carbon cycle by changing: (i) the amounts of soil organic matter (SOM); and (ii) the proportions amongst the carbon pools with different degrees of stability. In addition to affecting the carbon cycle, fires also affect the amounts and availability of nitrogen within soil organic matter. Especially char and other highly stable soil carbon pools are dificult to determine with solvent-based methods, so that pyrolysis-based analysis methods offer several advantages.

The main objective of this study is testing the efficacy of pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) as a fast analytical technique to detect wildfire-induced molecular alterations of the SOM in Mediterranean Leptosols.

To this end, the topsoil of two slopes with adjacent patches of burnt and unburnt Maritime Pine (Pinus pinaster) and eucalypt plantations (Eucalyptus globulus) were sampled in the Serra de Lousã, central Portugal. Compounds released by analytical pyrolysis showed alterations in the SOM due to fire. At desorption step (300 ºC), the marked presence of labile carbohydrate- derived compounds and of long chain n-alkanes distribution pointed to the incorporation of fresh plant material and/or low wildfire severity. Pyrolysis at 500 ºC revealed an increase of low molecular weight molecules for certain homologous series in fire-affected soils, suggesting the occurrence of thermal breakdown and cracking of long-chain components. Also the presence of several thermo-labile markers indicated that the wldfire severity had been low. Elemental analysis indicated marked fire-induced increases in total organic carbon (TOC) and total nitrogen (TN) for the pine stand as opposed to noticeable decreases for the eucalypt stands. The pH and CEC results were consistent with the contrast in fire-induced changes in TOC and TN. Probably, this contrast between the two sites was not due to differences in direct fire effects (especially fire severity) but to indirect fire effects i.e. in particular needle/leaf fall from partially combusted tree canopies.

Sílvia Regina Marques Faria

Universidade de Aveiro

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Membrane fouling control by Ca 2+ during coagulation–ultrafiltration process for algal-rich water treatment 2019-04-16


    Seasonal algal bloom, a water supply issue worldwide, can be efficiently solved by membrane technology. However, membranes typically suffer from serious fouling, which hinders the wide application of this technology. In this study, the feasibility of adding Ca2+ to control membrane fouling in coagulation–membrane treatment of algal-rich water was investigated. According to the results obtained, the normalized membrane flux decreased by a lower extent upon increasing the concentration of Ca2+ from 0 to 10 mmol/L. Simultaneously, the floc particle size increased significantly with the concentration of Ca2+, which leads to a lower hydraulic resistance. The coagulation performance is also enhanced with the concentration of Ca2+, inducing a slight osmotic pressure-induced resistance. The formation of Ca2+ coagulation flocs resulted in a looser, thin, and permeable cake layer on the membrane surface. This cake layer rejected organic pollutants and could be easily removed by physical and chemical cleaning treatments, as revealed by scanning electron microscopy images. The hydraulic irreversible membrane resistance was significantly reduced upon addition of Ca2+. All these findings suggest that the addition of Ca2+ may provide a simple-operation, cost-effective, and environmentally friendly technology for controlling membrane fouling during coagulation–membrane process for algal-rich water treatment.

  • Evaluation of the raw water quality: physicochemical and toxicological approaches 2019-04-13


    Environmental degradation has increased, mainly as a result of anthropogenic effects arising from population, industrial and agricultural growth. Water pollution is a problem that affects health, safety and welfare of the whole biota which shares the same environment. In Goiânia and metropolitan region, the main water body is the Meia Ponte River that is used for the abstraction of water, disposal of treated wastewater and effluents. In addition, this river receives wastewater from urban and rural areas. The aim in this present study was to evaluate the quality of raw water by some physical, chemical and toxicological tests. The physicochemical results found high levels of turbidity, conductivity, aluminum, phosphorus and metal iron, manganese, copper and lithium when compared to the standards of the Brazilian legislation. The values found of toxicity demonstrated a high degree of cytotoxicity and genotoxicity. Therefore, it was concluded that the Meia Ponte River has been undergoing constant environmental degradation, causing the poor quality of its waters. Thus, measures for the prevention and recovery should be adopted for the maintenance of the Meia Ponte River.

  • Review of the nature of some geophagic materials and their potential health effects on pregnant women: some examples from Africa 2019-04-11


    The voluntary human consumption of soil known as geophagy is a global practice and deep-rooted in many African cultures. The nature of geophagic material varies widely from the types to the composition. Generally, clay and termite mound soils are the main materials consumed by geophagists. Several studies revealed that gestating women across the world consume more soil than other groups for numerous motives. These motivations are related to medicinal, cultural and nutrients supplementation. Although geophagy in pregnancy (GiP) is a universal dynamic habit, the highest prevalence has been reported in African countries such as Kenya, Ghana, Rwanda, Nigeria, Tanzania, and South Africa. Geophagy can be both beneficial and detrimental. Its health effects depend on the amount and composition of the ingested soils, which is subjective to the geology and soil formation processes. In most cases, the negative health effects concomitant with the practice of geophagy eclipse the positive effects. Therefore, knowledge about the nature of geophagic material and the health effects that might arise from their consumption is important.