SEGH Articles

Studying the effects on soil organic matter of wildfires in central Portugal

01 January 2013
The main objective of this study is testing the efficacy of pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) as a fast analytical technique to detect wildfire-induced molecular alterations of the SOM in Mediterranean Leptosols.

 

Sílvia Regina Marques Faria, is a PhD student at the Universidade de Aveiro http:// www.cesam.ua.pt/silviaregina) undertaking a project entitled “WildFIRE effects on forest Soil Organic Matter stocks and losses by runoff”. She was a joint poster winner at the 9th ISEG meeting in Aveiro in July 2012. Her work is in collaboration with (IST-ITN), Sacavém, Portugal and (IRNAS-CSIC), Seville, Spain.

In Mediterranean ecosystems, forest fires are a common phenomenon and widely considered to be the main factor of disturbance. In the case of the Mediterranean Basin, the Iberian Peninsula has the highest risk of wildfire occurrence, and certainly in relative terms Portugal is affected most by wildfires, devastating on average 100,000 ha each year and dramatically larger areas in dry years like 2003 and 2005.

Wildfires result in the transformation of vegetation and litter, leaving charred residues, and thus influence the carbon cycle by changing: (i) the amounts of soil organic matter (SOM); and (ii) the proportions amongst the carbon pools with different degrees of stability. In addition to affecting the carbon cycle, fires also affect the amounts and availability of nitrogen within soil organic matter. Especially char and other highly stable soil carbon pools are dificult to determine with solvent-based methods, so that pyrolysis-based analysis methods offer several advantages.

The main objective of this study is testing the efficacy of pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) as a fast analytical technique to detect wildfire-induced molecular alterations of the SOM in Mediterranean Leptosols.

To this end, the topsoil of two slopes with adjacent patches of burnt and unburnt Maritime Pine (Pinus pinaster) and eucalypt plantations (Eucalyptus globulus) were sampled in the Serra de Lousã, central Portugal. Compounds released by analytical pyrolysis showed alterations in the SOM due to fire. At desorption step (300 ºC), the marked presence of labile carbohydrate- derived compounds and of long chain n-alkanes distribution pointed to the incorporation of fresh plant material and/or low wildfire severity. Pyrolysis at 500 ºC revealed an increase of low molecular weight molecules for certain homologous series in fire-affected soils, suggesting the occurrence of thermal breakdown and cracking of long-chain components. Also the presence of several thermo-labile markers indicated that the wldfire severity had been low. Elemental analysis indicated marked fire-induced increases in total organic carbon (TOC) and total nitrogen (TN) for the pine stand as opposed to noticeable decreases for the eucalypt stands. The pH and CEC results were consistent with the contrast in fire-induced changes in TOC and TN. Probably, this contrast between the two sites was not due to differences in direct fire effects (especially fire severity) but to indirect fire effects i.e. in particular needle/leaf fall from partially combusted tree canopies.

Sílvia Regina Marques Faria

Universidade de Aveiro www.cesam.ua.pt/silviaregina

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Soil contamination and human health: Part 1—preface 2020-01-27
  • The influence of application of biochar and metal-tolerant bacteria in polluted soil on morpho-physiological and anatomical parameters of spring barley 2020-01-27

    Abstract

    The paper presents the results of the model experiment on spring barley (Hordeum vulgare L.) grown in polluted soil. The influence of separate and combined application of wood biochar and heavy metal-tolerant bacteria on morpho-physiological, anatomical and ultrastructural parameters of H. vulgare L. has been studied. The joint application of biochar and bacteria increased the shoot length by 2.1-fold, root length by 1.7-fold, leaf length by 2.3-fold and dry weight by threefold compared to polluted variant, bringing the plant parameters to the control level. The maximal quantum yield of photosystem II decreased by 8.3% in H. vulgare L. grown in contaminated soil, whereas this decrease was less in biochar (7%), bacteria (6%) and in combined application of bacteria and biochar (5%). As for the transpiration rate, the H. vulgare L. grown in polluted soil has shown a decrease in transpiration rate by 26%. At the same time, the simultaneous application of biochar and bacteria has led to a significant improvement in the transpiration rate (14%). The H. vulgare L. also showed anatomical (integrity of epidermal, vascular bundles, parenchymal and chlorenchymal cells) and ultrastructural (chloroplasts, thylakoid system, plastoglobules, starch grains, mitochondria, peroxisomes, ribosomes, endoplasmic reticulum, vacuoles) changes, revealed by light-optical and transmission electron microscopy of leaf sections. The effects were most prominent in H. vulgare L., grown in polluted soil but gradually improved with application of biochar, bacteria and their combination. The use of biochar in combination with metal-tolerant bacteria is an efficient tool for remediation of soils, contaminated with heavy metals. The positive changes caused by the treatment can be consistently traced at all levels of plant organization.

  • Earthworms and vermicompost: an eco-friendly approach for repaying nature’s debt 2020-01-23

    Abstract

    The steady increase in the world’s population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.

    Graphic abstract