SEGH Articles

Tellus Border: Initial findings of a geo-environmental survey of the border region of Ireland

01 March 2013
The Tellus Border project is an EU INTERREG IVA-funded mapping project that involved baseline geochemical and geophysical surveys in the border region of Ireland, and the integration of data from these with existing data collected in Northern Ireland.

The Tellus Border project is an EU INTERREG IVA-funded mapping project that involves baseline geochemical and geophysical surveys in the border region of Ireland, and the integration of data from these with existing data collected in Northern Ireland. The Geological Survey of Ireland (GSI), Queen’s University Belfast and Dundalk Institute of Technology are partners in the cross-border initiative, which is led by the Geological Survey of Northern Ireland.

After the successful completion of an airborne geophysical survey and a multi-element geochemical survey in summer 2012, the three-year project is now in a data interpretation and mapping phase.  As part of the geochemical survey, over 21,000 samples of soil, stream water, sediment and vegetation were collected over an area spanning 12,300 km2 at an average density of 1 site per 4 km2.  Stream sediment, water and topsoil samples have now been analysed for a range of inorganic elements. The data will be of assistance to the agricultural sector in the assessment of soil trace elements, to environmental managers in the assessment of potentially harmful elements in the environment and to the mineral exploration community. Geochemical data will be released free-of-charge via www.tellusborder.eu in the months ahead; regional geochemical and geophysical maps are currently available to view online.

Flying nearly 60,000 line kilometers, the airborne survey aircraft collected data from three on-board instruments (magnetometer, electromagnetic system and gamma ray detector) while flying at a low altitude of 60m above ground level. The data is already being used for the improvement of geological mapping, the assessment of radon hazard, detection of landfill pollution plumes and the identification of areas for deep geothermal potential. The airborne survey data has revealed extraordinary new detail to regional geological features which extend throughout the border region. New understanding of subsurface structures such as faults and igneous dykes is already helping to improve and update the Geological Survey of Ireland’s existing geological maps, which support sustainable planning countrywide.

A conference will be held in October 2013 to present the full findings from the survey and accompanying academic research projects. To register for notifications for upcoming data releases, please email your details to tellusborder@gsi.ie.

 

Mairead Glennon, Kate Knights (kate.knights@gsi.ie) and Ray Scanlon, Geological Survey of Ireland, Dublin.

27th February 2013

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Membrane fouling control by Ca 2+ during coagulation–ultrafiltration process for algal-rich water treatment 2019-04-16

    Abstract

    Seasonal algal bloom, a water supply issue worldwide, can be efficiently solved by membrane technology. However, membranes typically suffer from serious fouling, which hinders the wide application of this technology. In this study, the feasibility of adding Ca2+ to control membrane fouling in coagulation–membrane treatment of algal-rich water was investigated. According to the results obtained, the normalized membrane flux decreased by a lower extent upon increasing the concentration of Ca2+ from 0 to 10 mmol/L. Simultaneously, the floc particle size increased significantly with the concentration of Ca2+, which leads to a lower hydraulic resistance. The coagulation performance is also enhanced with the concentration of Ca2+, inducing a slight osmotic pressure-induced resistance. The formation of Ca2+ coagulation flocs resulted in a looser, thin, and permeable cake layer on the membrane surface. This cake layer rejected organic pollutants and could be easily removed by physical and chemical cleaning treatments, as revealed by scanning electron microscopy images. The hydraulic irreversible membrane resistance was significantly reduced upon addition of Ca2+. All these findings suggest that the addition of Ca2+ may provide a simple-operation, cost-effective, and environmentally friendly technology for controlling membrane fouling during coagulation–membrane process for algal-rich water treatment.

  • Evaluation of the raw water quality: physicochemical and toxicological approaches 2019-04-13

    Abstract

    Environmental degradation has increased, mainly as a result of anthropogenic effects arising from population, industrial and agricultural growth. Water pollution is a problem that affects health, safety and welfare of the whole biota which shares the same environment. In Goiânia and metropolitan region, the main water body is the Meia Ponte River that is used for the abstraction of water, disposal of treated wastewater and effluents. In addition, this river receives wastewater from urban and rural areas. The aim in this present study was to evaluate the quality of raw water by some physical, chemical and toxicological tests. The physicochemical results found high levels of turbidity, conductivity, aluminum, phosphorus and metal iron, manganese, copper and lithium when compared to the standards of the Brazilian legislation. The values found of toxicity demonstrated a high degree of cytotoxicity and genotoxicity. Therefore, it was concluded that the Meia Ponte River has been undergoing constant environmental degradation, causing the poor quality of its waters. Thus, measures for the prevention and recovery should be adopted for the maintenance of the Meia Ponte River.

  • Review of the nature of some geophagic materials and their potential health effects on pregnant women: some examples from Africa 2019-04-11

    Abstract

    The voluntary human consumption of soil known as geophagy is a global practice and deep-rooted in many African cultures. The nature of geophagic material varies widely from the types to the composition. Generally, clay and termite mound soils are the main materials consumed by geophagists. Several studies revealed that gestating women across the world consume more soil than other groups for numerous motives. These motivations are related to medicinal, cultural and nutrients supplementation. Although geophagy in pregnancy (GiP) is a universal dynamic habit, the highest prevalence has been reported in African countries such as Kenya, Ghana, Rwanda, Nigeria, Tanzania, and South Africa. Geophagy can be both beneficial and detrimental. Its health effects depend on the amount and composition of the ingested soils, which is subjective to the geology and soil formation processes. In most cases, the negative health effects concomitant with the practice of geophagy eclipse the positive effects. Therefore, knowledge about the nature of geophagic material and the health effects that might arise from their consumption is important.