SEGH Articles

The Future is Africa

05 February 2014
In early January Dr Michael Watts visited Zimbabwe and Zambia with a colleague from the University of Nottingham. They were funded from a Royal Society-DFID grant to foster science networks in Africa and to help strengthen scientific capacity. Here Michael tells us about his trip

 

 On a recent visit to Zimbabwe and Zambia with my colleague Prof Martin Broadley from the University of Nottingham, we faced the usual clichés of poverty, rickety infrastructure and reported political problems (in Africa that is!). On the ground, we experienced well organised accommodation, welcoming people, good internet links, extensive construction projects and in particular we met some innovative colleagues working in academia. Academics in that part of the world press on with applied research, despite limitations in funds and access to the latest technology. In particular they use tried and tested approaches to laboratory analyses, field trials and application of empirical knowledge to help answer some real soil and agricultural problems, especially using regional networks.  In the UK, we could be mistaken for thinking all of Africa is dependent on aid. Much of it is, but in Zambia and Zimbabwe, there are huge opportunities in commodities and agriculture, as well as multimedia services driven by rapid progress in IT, internet and mobile phones. 

There are numerous opportunities for UK science to collaborate on an equal basis with African scientists. For example, our previous efforts in Malawi in proposing the biofortification of staple crops with essential micronutrients to target key health issues at a population level, is becoming accepted in the region. Many studies within academia and research institutes are underway to explore best practice for agricultural techniques to improve the fertility and micronutrient content of soil for food production / quality, within the confines of available resources, such as limited lab capability. The reason for our recent visit resulted from a network grant from the Royal Society-DFID call for strengthening science capacity in Africa. For our part, improving soil science capacity to build on excellent regional academic capability through access to current technologies in lab analyses, data representation and geostatistics. This can be facilitated via north-south and south-south research links with consortia partners in Malawi, Zambia and Zimbabwe.

Alongside the agricultural initiatives, there are opportunities for SEGH scientists to collaborate with local scientists on contaminant exposure associated with immense mining activities. Current studies in Zambia employ exposure techniques (microbial activity, human biomarker analyses) to inform safe working practices and better environmental strategies for resource exploitation, particularly in the copper belt region. Whilst the RS-DFID call will fund African PhD students in African institutions, there are opportunities for UK students to learn environmental science in tropical environments and to develop their wider understanding. Two-way exchange of students and research staff will build the future collaborative partnerships to the benefit of SEGH and African science capacity.

Dr Michael Watts  http://www.bgs.ac.uk/staff/profiles/4583.html

BGS-University of Nottingham Centre for Environmental Geochemistry

 

Acknowledgements:

Royal Society for the network grant funding and the BGS Global initiative.

Related reports:

http://segh.net/articles/Notes_from_Malawi/

Joy E et al. (2014). Dietary Mineral Supplies in Africa, Plant Physiologia, in press DOI: 10.1111/ppl.12144. http://onlinelibrary.wiley.com/doi/10.1111/ppl.12144/abstract 

Hurst R, Siyame EWP, Young SD, Chilimba ADC, Joy EJM, Black CR, Ander EL, Watts MJ, Chilima B, Gondwe J, Kang'ombe D, Stein AJ, Fairweather-Tait SJ, Gibson RS, Kalimbira A, Broadley MR (2013). Soil-type influences human selenium status and underlies widespread selenium deficiency risks in Malawi. Scientific Reports, 3, 1425. http://bit.ly/10Cd5P5.

Chilimba ADC, Young SD, Black CR, Rogerson KB, Ander EL, Watts M, Lammel J, Broadley MR (2011). Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi. Scientific Reports, 1, 72. http://bit.ly/ZjK3Th

Broadley MR, Chilimba ADC, Joy E, Young SD, Black CR, Ander EL, Watts MJ, Hurst R, Fairweather-Tait SJ, White PJ, Gibson RS (2012). Dietary requirements for magnesium but not calcium are likely to be met in Malawi based on national food supply data. International Journal for Vitamin and Nutrition Research, 82, 192-199. http://bit.ly/WGa2I6

Joy EJM, Young SD, Black CR, Ander EL, Watts, MJ, Broadley MR (2013). Risk of dietary magnesium deficiency is low in most African countries based on food supply data. Plant and Soil, doi:10.1007/s11104-012-1388-z. http://bit.ly/16pJPiD

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Fate and partitioning of heavy metals in soils from landfill sites in Cape Town, South Africa: a health risk approach to data interpretation 2019-06-14

    Abstract

    The fate and persistence of trace metals in soils and sludge from landfill sites are crucial in determining the hazard posed by landfill, techniques for their restoration and potential reuse purposes of landfill sites after closure and restoration. A modified European Community Bureau of Reference’s (BCR) sequential extraction procedure was applied for partitioning and evaluating the mobility and persistence of trace metals (As, Cd, Cr, Cu, Ni, Pb, Sb, Se, Zn) in soils from three landfill sites and sludge sample from Cape Town, South Africa. Inductively coupled plasma optical emission spectroscopy was used to analyze BCR extracts. The mobility sequence based on the BCR mobile fraction showed that Cu (74–87%), Pb (65–80%), Zn (59–82%) and Cd (55–66%) constituted the mobile metals in the soils from the three sites. The mobility of Cu, Zn and Ni (> 95%) was particularly high in the sludge sample, which showed significant enrichment compared to the soil samples. Geo-accumulation index (Igeo) and risk assessment code were used to further assess the environmental risk of the metals in the soils. Exposure to the soils and sludge did not pose any non-cancer risks to adult and children as the hazard quotient and hazard index values were all below the safe level of 1. The cancer risks from Cd, Cr and Ni require that remedial action be considered during closure and restoration of the landfill sites.

  • An investigation into the use of < 38 µm fraction as a proxy for < 10 µm road dust particles 2019-06-13

    Abstract

    It is well documented that a large portion of urban particulate matters is derived from road dust. Isolating particles of RD which are small enough to be inhaled, however, is a difficult process. In this study, it is shown for the first time that the < 38 µm fraction of road dust particles can be used as a proxy for road dust particles < 10 µm in bioaccessibility studies. This study probed similarities between the < 10 and < 38µm fractions of urban road dust to show that the larger of the two can be used for analysis for which larger sample masses are required, as is the case with in vitro analysis. Road dust, initially segregated to size < 38 µm using sieves, was again size segregated to < 10 µm using water deposition. Both the original < 38 µm and the separated < 10 µm fractions were then subject to single particle analysis by SEM–EDX and bulk analysis by ICP-OES for its elemental composition. Dissolution tests in artificial lysosomal fluid, representative of lung fluid, were carried out on both samples to determine % bioaccessibility of selected potentially harmful elements and thus probe similarities/differences in in vitro behaviour between the two fractions. The separation technique achieved 94.3% of particles < 10 µm in terms of number of particles (the original sample contained 90.4% as determined by SEM–EDX). Acid-soluble metal concentration results indicated differences between the samples. However, when manipulated to negate the input of Si, SEM–EDX data showed general similarities in metal concentrations. Dissolution testing results indicated similar behaviour between the two samples in a simulated biological fluid.

  • Degradation of petroleum hydrocarbons in unsaturated soil and effects on subsequent biodegradation by potassium permanganate 2019-06-13

    Abstract

    To date, the oxidation of petroleum hydrocarbons using permanganate has been investigated rarely. Only a few studies on the remediation of unsaturated soil using permanganate can be found in the literature. This is, to the best of our knowledge, the first study conducted using permanganate pretreatment to degrade petroleum hydrocarbons in unsaturated soil in combination with subsequent bioaugmentation. The pretreatment of diesel-contaminated unsaturated soil with 0.5-pore-volume (5%) potassium permanganate (PP) by solution pouring and foam spraying (with a surfactant) achieved the total petroleum hydrocarbon (TPH) removal efficiencies of 37% and 72.1%, respectively. The PP foam, when coupled with bioaugmentation foam, further degraded the TPH to a final concentration of 438 mg/kg (92.1% total reduction). The experiment was conducted without soil mixing or disturbance. The relatively high TPH removal efficiency achieved by the PP–bioaugmentation serial foam application may be attributed to an increase in soil pH caused by the PP and effective infiltration of the remediation agent by foaming. The applied PP foam increased the pH of the acidic soil, thus enhancing microbial activity. The first-order biodegradation rate after PP oxidation was calculated to be 0.068 d−1. Furthermore, 94% of the group of relatively persistent hydrocarbons (C18–C22) was removed by PP–bioaugmentation, as verified by chromatogram peaks. Some physicochemical parameters related to contaminant removal efficiency were also evaluated. The results reveal that PP can degrade soil TPH and significantly enhance the biodegradation rate in unsaturated diesel-contaminated soil when combined with bioaugmentation foam.