SEGH Articles

The Future is Africa

05 February 2014
In early January Dr Michael Watts visited Zimbabwe and Zambia with a colleague from the University of Nottingham. They were funded from a Royal Society-DFID grant to foster science networks in Africa and to help strengthen scientific capacity. Here Michael tells us about his trip

 

 On a recent visit to Zimbabwe and Zambia with my colleague Prof Martin Broadley from the University of Nottingham, we faced the usual clichés of poverty, rickety infrastructure and reported political problems (in Africa that is!). On the ground, we experienced well organised accommodation, welcoming people, good internet links, extensive construction projects and in particular we met some innovative colleagues working in academia. Academics in that part of the world press on with applied research, despite limitations in funds and access to the latest technology. In particular they use tried and tested approaches to laboratory analyses, field trials and application of empirical knowledge to help answer some real soil and agricultural problems, especially using regional networks.  In the UK, we could be mistaken for thinking all of Africa is dependent on aid. Much of it is, but in Zambia and Zimbabwe, there are huge opportunities in commodities and agriculture, as well as multimedia services driven by rapid progress in IT, internet and mobile phones. 

There are numerous opportunities for UK science to collaborate on an equal basis with African scientists. For example, our previous efforts in Malawi in proposing the biofortification of staple crops with essential micronutrients to target key health issues at a population level, is becoming accepted in the region. Many studies within academia and research institutes are underway to explore best practice for agricultural techniques to improve the fertility and micronutrient content of soil for food production / quality, within the confines of available resources, such as limited lab capability. The reason for our recent visit resulted from a network grant from the Royal Society-DFID call for strengthening science capacity in Africa. For our part, improving soil science capacity to build on excellent regional academic capability through access to current technologies in lab analyses, data representation and geostatistics. This can be facilitated via north-south and south-south research links with consortia partners in Malawi, Zambia and Zimbabwe.

Alongside the agricultural initiatives, there are opportunities for SEGH scientists to collaborate with local scientists on contaminant exposure associated with immense mining activities. Current studies in Zambia employ exposure techniques (microbial activity, human biomarker analyses) to inform safe working practices and better environmental strategies for resource exploitation, particularly in the copper belt region. Whilst the RS-DFID call will fund African PhD students in African institutions, there are opportunities for UK students to learn environmental science in tropical environments and to develop their wider understanding. Two-way exchange of students and research staff will build the future collaborative partnerships to the benefit of SEGH and African science capacity.

Dr Michael Watts  http://www.bgs.ac.uk/staff/profiles/4583.html

BGS-University of Nottingham Centre for Environmental Geochemistry

 

Acknowledgements:

Royal Society for the network grant funding and the BGS Global initiative.

Related reports:

http://segh.net/articles/Notes_from_Malawi/

Joy E et al. (2014). Dietary Mineral Supplies in Africa, Plant Physiologia, in press DOI: 10.1111/ppl.12144. http://onlinelibrary.wiley.com/doi/10.1111/ppl.12144/abstract 

Hurst R, Siyame EWP, Young SD, Chilimba ADC, Joy EJM, Black CR, Ander EL, Watts MJ, Chilima B, Gondwe J, Kang'ombe D, Stein AJ, Fairweather-Tait SJ, Gibson RS, Kalimbira A, Broadley MR (2013). Soil-type influences human selenium status and underlies widespread selenium deficiency risks in Malawi. Scientific Reports, 3, 1425. http://bit.ly/10Cd5P5.

Chilimba ADC, Young SD, Black CR, Rogerson KB, Ander EL, Watts M, Lammel J, Broadley MR (2011). Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi. Scientific Reports, 1, 72. http://bit.ly/ZjK3Th

Broadley MR, Chilimba ADC, Joy E, Young SD, Black CR, Ander EL, Watts MJ, Hurst R, Fairweather-Tait SJ, White PJ, Gibson RS (2012). Dietary requirements for magnesium but not calcium are likely to be met in Malawi based on national food supply data. International Journal for Vitamin and Nutrition Research, 82, 192-199. http://bit.ly/WGa2I6

Joy EJM, Young SD, Black CR, Ander EL, Watts, MJ, Broadley MR (2013). Risk of dietary magnesium deficiency is low in most African countries based on food supply data. Plant and Soil, doi:10.1007/s11104-012-1388-z. http://bit.ly/16pJPiD

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Spatial variability and geochemistry of rare earth elements in soils from the largest uranium–phosphate deposit of Brazil 2018-02-22

    Abstract

    The Itataia uranium–phosphate deposit is the largest uranium reserve in Brazil. Rare earth elements (REEs) are commonly associated with phosphate deposits; however, there are no studies on the concentrations of REEs in soils of the Itataia deposit region. Thus, the objective of the research was to evaluate the concentration and spatial variability of REEs in topsoils of Itataia phosphate deposit region. In addition, the influence of soil properties on the geochemistry of REEs was investigated. Results showed that relatively high mean concentrations (mg kg−1) of heavy REEs (Gd 6.01; Tb 1.25; Ho 1.15; Er 4.05; Tm 0.64; Yb 4.61; Lu 0.65) were found in surface soils samples. Soil properties showed weak influence on the geochemical behavior of REEs in soils, except for the clay content. On the other hand, parent material characteristics, such as P and U, had strong influence on REEs concentrations. Spatial distribution patterns of REEs in soils are clearly associated with P and U contents. Therefore, geochemical surveys aiming at the delineation of ore-bearing zones in the region can benefit from our data. The results of this work reinforce the perspective for co-mining of P, U and REEs in this important P–U reserve.

  • 2017 Outstanding Reviewers 2018-02-21
  • Seasonal occurrence, source evaluation and ecological risk assessment of polycyclic aromatic hydrocarbons in industrial and agricultural effluents discharged in Wadi El Bey (Tunisia) 2018-02-13

    Abstract

    Polycyclic aromatic hydrocarbons are of great concern due to their persistence, bioaccumulation and toxic properties. The occurrence, source and ecological risk assessment of 26 polycyclic aromatic hydrocarbons in industrial and agricultural effluents affecting the Wadi El Bey watershed were investigated by means of gas chromatographic/mass spectrometric analysis (GC/MS). Total PAHs (∑ 26 PAH) ranged from 1.21 to 91.7 µg/L. The 4- and 5-ring compounds were the principal PAHs detected in most of 5 sites examined. Diagnostic concentration ratios and molecular indices were performed to identify the PAH sources. Results show that PAHs could originate from petrogenic, pyrolytic and mixed sources. According to the ecotoxicological assessment, the potential risk associated with PAHs affecting agricultural and industrial effluents ranged from moderate to high for both aquatic ecosystem and human health. The toxic equivalency factor (TEF) approach indicated that benzo[a]pyrene and benz[a]anthracene were the principal responsible for carcinogenic power of samples.