SEGH Articles

The Indian Sundarban Mangrove wetland: an ecological perspective

01 February 2012
Dr Sarkar has carried out research on the changes in the ecological and pollution status of the Indian Sundarban mangrove wetlands, as a result of intense anthropological pressures affecting the biotic and abiotic compartments of this fragile ecosystem.

 

Dr Santosh Sarkar is a professor at the Department of Marine Science, University of Calcutta in India. Over the past 30 years he has carried out research on the changes in the ecological and pollution status of the Sundarban mangrove wetland, as a result of intense anthropological pressures affecting the biotic and abiotic compartments of this fragile ecosystem. 

The Indian Sundarban is located in North East India, in close proximity to Kolkatta. It is the largest delta in the estuarine phase of the river Ganges, and is situated in the low-lying, meso-macrotidal, humid and tropical belt at the estuarine phase of the Ganges River and Bay of Bengal. The Sundarban hosts the world's largest mangrove forest together with associated flora and fauna.

There have been remarkable ecological changes due to multiple human activities. such as; excavation of sand from the sand dunes, dredging and intensive boating, deforestation, collection of prawn seed, immersion of idols in the river etc., thus affecting sediment and water quality as well as biodiversity.

Dr Sarkar has quantified the adverse impacts due to collection of tiger prawn seeds for aquacultural farms and molluscan shells for poultry feed and edible lime. Indiscriminate exploitation of these resources leads to a heavy reduction of the species concerned and other associated marine communities. The impacts of biodiversity loss and their after-effects on the ecobalance of the coastal system have become a matter of great concern to ecologists to maintain security and sustainability.

Collection of  tiger prawn seed (Penaeus monodon) from Sundarban coastal regions

Dr Sarkar first worked on the occurrence, distribution and sources of several persistent organic pollutants (POPs) (PAHs, PCBs, DDTs, PBDEs, HCHs, HCB) measured in  sediments from the Sundarban wetlands, obtaining a dataset with more than 2000 analyses. The POPs belong to a group of pollutants that are semivolatile, toxic and  bioaccumulative in nature and resist photolytic, chemical and biological degradation. The concentration of four isomers of  HCH exhibit a heterogenic distribution. Among the isomers and metabolites of HCH, DDT and PCB, alpha-HCH, pp ′-DDT and PCB 101, PCB 118,  PCB 153 and PCB 138  were found to be dominant. High ratios of metabolites of DDT to ∑ DDTs reveal recent use of DDT in this coastal environment. PBDE, an important group of brominated flame retardants (BFR), showed moderate to low contamination closely in uniformity to other Asian aquatic environments. The PAH diagnostic ratios indicated that the PAHs in sediment were of pyrolytic origin, contaminated by local vehicle combustion, biomass burning and domestic an industrial coal combustion.

Dr Sarkar performed the first screening ecotoxicological risk evaluation of the persistent organic pollutants (POPs) in the Sundarban wetland. The pollutant effects were assessed by the use of three different sediment quality guidelines (SQGs) previously developed in the literature to evaluate toxicity induced in sediment-dwelling organisms. The three different approaches chosen for risk assessment of the Sundarban were: (1) the consensus SQGs obtained by TEC (threshold effect concentration); (2) PEC (probable effect concentration; and (3) EEC (extreme effect concentration), the threshold/ probable effect level (TEL/PEL) approach and, finally, the ERL-ERM guidelines, including the m-ERM-Q (mean ERM quotient). The evaluation of the toxicity induced by a mixture of the target pollutants indicated the importance of gama-HCH contamination in the Sundarban sediments despite the very low concentrations measured in sediments. A different sensitivity for toxicity assessment due to quality guidelines was obtained, as the consensus SQGs based on TEC were less conservative and protective than the TEL and ERL approaches, while the use of m-ERM-Q seems to be the most powerful tool to predict the toxicity related to a contaminant mixture.

Collaborative research work with Michael Watts of the British Geological Survey, provided initial findings for arsenic speciation in four soft-bottom benthic polychaetes (Perenereis cultifera, Ganganereis sootai, Lumbrinereis notocirrata and Dendronereis arborifera) along with host sediments from the Sundarban mangrove wetland.  Arsenic concentrations in polychaete body tissues varied greatly, suggesting species-specific characteristics and inherent peculiarities in arsenic metabolism. Arsenic was generally present in polychaetes as arsenate (AsV) or arsenite (AsIII) (30 to 53 % as inorganic As) and dimethylarsinic acid (DMAV; <1 to 25 %). Arsenobetaine (AB; <16%), and PO4-arsenoriboside (8 to 48%) were also detected as minor constituents, whilst monomethylarsonic acid (MAV) was not detected in any of the polychaetes. The highest total As (14.7 mg kg-1 dry wt) was observed in the polychaete D. arborifera collected from the vicinity of a sewage outfall in which the majority of As was present as an uncharacterized compound (10.3 mg kg-1 dry wt) eluted prior to AB. Host sediments ranged from 2.5 to 10.4 mg kg-1 total As. This work supports the importance of speciation analysis of As, because of the ubiquitous occurrence of this metalloid in the environment, and its variable toxicity depending on chemical form. Follow up work is being carried out on further samples collected with the support of Royal Society funding.  This will enable consideration of a range of polychaete species in terms of diverse habitat and food preferences to assess the arsenic uptake pathways and to determine the influence of ecological factors on total As concentrations and species proportion in this wetland ecosystem.

Gradually a full picture of the growing impact of human activity on the pristine environment of the Sundarban mangrove wetlands is being developed.  This is gradually being achieved through multiple international collaborations and will provide vital information for the planning and use of land and waterways in the wetlands.

Professor Santosh Sarkar, Department of Marine Science, University of Kolkatta, Indiasarkar.santosh@gmail.com

References

Biogeochemistry of mercury and methylmercury in sediment cores from Sundarban mangrove wetland, India - a UNESCO World Heritage Site - Mousumi Chatterjee, João Canário, Santosh Kumar Sarkar, Vasco Branco, Nallamuthu Godhantaraman, Bhaskar Deb Bhattacharya, Asokkumar Bhattacharya  - Environmental Monitoring and Assessment, Springer. DOI:10.1007/s10661-011-2336-8 2011. http://www.springerlink.com/content/v16047jhk2027416/

Quantification and source identification of polycyclic aromatic hydrocarbons in core sediments from Sundarban Mangrove Wetland, India  - C. Domínguez; S. K. Sarkar, A Bhattacharya, M Chatterjee, B D Bhattacharya, E Jover,  J Albaigés, J M Bayona, Md. A Alam and K K Satpathy. Archives of Environmental Contamination and Toxicology, Springer Publishers, 59(1): 49 - 61, 2010.           http://www.springerlink.com/content/l32803q28210256t/

Metal concentrations in water and sediments from tourist beaches of   Acapulco, Mexico  - M.P. Jonathan, P.D. Roy, N. Thangadurai, S. Srinivasalu, P.F. Rodríguez Espinosa, S.K.Sarkar, C. Lakshumanan, M. Navarrete-López and N.P. Muñoz-Sevilla - Marine Pollution Bulletin, Springer, 62, 845-850, 2011. http://www.sciencedirect.com/science/article/pii/S0025326X11001135

Baseline of organotin contamination in sediments of Sunderban mangrove wetland and adjacent coastal regions, India - P . Anderson, S K Sarkar, B D Bhattacharya, M Chatterjee, K K Satpathy, T Peshkur and B Antizar-Ladislao. - Ecotoxicology,Springer, 20 (8), 1975-1983, 2011. DOI 10.1007/s10646-011-0739-5. http://www.springerlink.com/content/52j87u2658171821/

 

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Agro-ecological suitability assessment of Chinese Medicinal Yam under future climate change 2019-10-15

    Abstract

    Chinese Medicinal Yam (CMY) has been prescribed as medicinal food for thousand years in China by Traditional Chinese Medicine (TCM) practitioners. Its medical benefits include nourishing the stomach and spleen to improve digestion, replenishing lung and kidney, etc., according to the TCM literature. As living standard rises and public health awareness improves in recent years, the potential medicinal benefits of CMY have attracted increasing attention in China. It has been found that the observed climate change in last several decades, together with the change in economic structure, has driven significant shift in the pattern of the traditional CMY planting areas. To identify suitable planting area for CMY in the near future is critical for ensuring the quality and supply quantity of CMY, guiding the layout of CMY industry, and safeguarding the sustainable development of CMY resources for public health. In this study, we first collect 30-year records of CMY varieties and their corresponding phenology and agro-meteorological observations. We then consolidate these data and use them to enrich and update the eco-physiological parameters of CMY in the agro-ecological zone (AEZ) model. The updated CMY varieties and AEZ model are validated using the historical planting area and production under observed climate conditions. After the successful validation, we use the updated AEZ model to simulate the potential yield of CMY and identify the suitable planting regions under future climate projections in China. This study shows that regions with high ecological similarity to the genuine and core producing areas of CMY mainly distribute in eastern Henan, southeastern Hebei, and western Shandong. The climate suitability of these areas will be improved due to global warming in the next 50 years, and therefore, they will continue to be the most suitable CMY planting regions.

  • Application of stable isotopes and dissolved ions for monitoring landfill leachate contamination 2019-10-15

    Abstract

    We evaluated groundwater contamination by landfill leachate at a municipal landfill and characterized isotopic and hydrogeochemical evidence of the degradation and natural attenuation of buried organic matter at the study site. Dissolved ion content was generally much higher in the leachate than in the surrounding groundwater. The leachate was characterized by highly elevated bicarbonate and ammonium levels and a lack of nitrate and sulfate, indicating generation under anoxic conditions. Leachate δD and δ13CDIC values were much higher than those of the surrounding groundwater; some groundwater samples near the landfill showed a significant contamination by the leachate plume. Hydrochemical characteristics of the groundwater suggest that aquifer geology in the study area plays a key role in controlling the natural attenuation of leachate plumes in this oxygen-limited environment.

  • Lead transfer into the vegetation layer growing naturally in a Pb-contaminated site 2019-10-10

    Abstract

    The lead was one of the main elements in the glazes used to colour ceramic tiles. Due to its presence, ceramic sludge has been a source of environmental pollution since this dangerous waste has been often spread into the soil without any measures of pollution control. These contaminated sites are often located close to industrial sites in the peri-urban areas, thus representing a considerable hazard to the human and ecosystem health. In this study, we investigated the lead transfer into the vegetation layer (Phragmites australis, Salix alba and Sambucus nigra) growing naturally along a Pb-contaminated ditch bank. The analysis showed a different lead accumulation among the species and their plant tissues. Salix trees were not affected by the Pb contamination, possibly because their roots mainly develop below the contaminated deposit. Differently, Sambucus accumulated high concentrations of lead in all plant tissues and fruits, representing a potential source of biomagnification. Phragmites accumulated large amounts of lead in the rhizomes and, considering its homogeneous distribution on the site, was used to map the contamination. Analysing the Pb concentration within plant tissues, we got at the same time information about the spread, the history of the contamination and the relative risks. Finally, we discussed the role of natural recolonizing plants for the soil pollution mitigation and their capacity on decreasing soil erosion and water run-off.