SEGH Articles

The Indian Sundarban Mangrove wetland: an ecological perspective

01 February 2012
Dr Sarkar has carried out research on the changes in the ecological and pollution status of the Indian Sundarban mangrove wetlands, as a result of intense anthropological pressures affecting the biotic and abiotic compartments of this fragile ecosystem.


Dr Santosh Sarkar is a professor at the Department of Marine Science, University of Calcutta in India. Over the past 30 years he has carried out research on the changes in the ecological and pollution status of the Sundarban mangrove wetland, as a result of intense anthropological pressures affecting the biotic and abiotic compartments of this fragile ecosystem. 

The Indian Sundarban is located in North East India, in close proximity to Kolkatta. It is the largest delta in the estuarine phase of the river Ganges, and is situated in the low-lying, meso-macrotidal, humid and tropical belt at the estuarine phase of the Ganges River and Bay of Bengal. The Sundarban hosts the world's largest mangrove forest together with associated flora and fauna.

There have been remarkable ecological changes due to multiple human activities. such as; excavation of sand from the sand dunes, dredging and intensive boating, deforestation, collection of prawn seed, immersion of idols in the river etc., thus affecting sediment and water quality as well as biodiversity.

Dr Sarkar has quantified the adverse impacts due to collection of tiger prawn seeds for aquacultural farms and molluscan shells for poultry feed and edible lime. Indiscriminate exploitation of these resources leads to a heavy reduction of the species concerned and other associated marine communities. The impacts of biodiversity loss and their after-effects on the ecobalance of the coastal system have become a matter of great concern to ecologists to maintain security and sustainability.

Collection of  tiger prawn seed (Penaeus monodon) from Sundarban coastal regions

Dr Sarkar first worked on the occurrence, distribution and sources of several persistent organic pollutants (POPs) (PAHs, PCBs, DDTs, PBDEs, HCHs, HCB) measured in  sediments from the Sundarban wetlands, obtaining a dataset with more than 2000 analyses. The POPs belong to a group of pollutants that are semivolatile, toxic and  bioaccumulative in nature and resist photolytic, chemical and biological degradation. The concentration of four isomers of  HCH exhibit a heterogenic distribution. Among the isomers and metabolites of HCH, DDT and PCB, alpha-HCH, pp ′-DDT and PCB 101, PCB 118,  PCB 153 and PCB 138  were found to be dominant. High ratios of metabolites of DDT to ∑ DDTs reveal recent use of DDT in this coastal environment. PBDE, an important group of brominated flame retardants (BFR), showed moderate to low contamination closely in uniformity to other Asian aquatic environments. The PAH diagnostic ratios indicated that the PAHs in sediment were of pyrolytic origin, contaminated by local vehicle combustion, biomass burning and domestic an industrial coal combustion.

Dr Sarkar performed the first screening ecotoxicological risk evaluation of the persistent organic pollutants (POPs) in the Sundarban wetland. The pollutant effects were assessed by the use of three different sediment quality guidelines (SQGs) previously developed in the literature to evaluate toxicity induced in sediment-dwelling organisms. The three different approaches chosen for risk assessment of the Sundarban were: (1) the consensus SQGs obtained by TEC (threshold effect concentration); (2) PEC (probable effect concentration; and (3) EEC (extreme effect concentration), the threshold/ probable effect level (TEL/PEL) approach and, finally, the ERL-ERM guidelines, including the m-ERM-Q (mean ERM quotient). The evaluation of the toxicity induced by a mixture of the target pollutants indicated the importance of gama-HCH contamination in the Sundarban sediments despite the very low concentrations measured in sediments. A different sensitivity for toxicity assessment due to quality guidelines was obtained, as the consensus SQGs based on TEC were less conservative and protective than the TEL and ERL approaches, while the use of m-ERM-Q seems to be the most powerful tool to predict the toxicity related to a contaminant mixture.

Collaborative research work with Michael Watts of the British Geological Survey, provided initial findings for arsenic speciation in four soft-bottom benthic polychaetes (Perenereis cultifera, Ganganereis sootai, Lumbrinereis notocirrata and Dendronereis arborifera) along with host sediments from the Sundarban mangrove wetland.  Arsenic concentrations in polychaete body tissues varied greatly, suggesting species-specific characteristics and inherent peculiarities in arsenic metabolism. Arsenic was generally present in polychaetes as arsenate (AsV) or arsenite (AsIII) (30 to 53 % as inorganic As) and dimethylarsinic acid (DMAV; <1 to 25 %). Arsenobetaine (AB; <16%), and PO4-arsenoriboside (8 to 48%) were also detected as minor constituents, whilst monomethylarsonic acid (MAV) was not detected in any of the polychaetes. The highest total As (14.7 mg kg-1 dry wt) was observed in the polychaete D. arborifera collected from the vicinity of a sewage outfall in which the majority of As was present as an uncharacterized compound (10.3 mg kg-1 dry wt) eluted prior to AB. Host sediments ranged from 2.5 to 10.4 mg kg-1 total As. This work supports the importance of speciation analysis of As, because of the ubiquitous occurrence of this metalloid in the environment, and its variable toxicity depending on chemical form. Follow up work is being carried out on further samples collected with the support of Royal Society funding.  This will enable consideration of a range of polychaete species in terms of diverse habitat and food preferences to assess the arsenic uptake pathways and to determine the influence of ecological factors on total As concentrations and species proportion in this wetland ecosystem.

Gradually a full picture of the growing impact of human activity on the pristine environment of the Sundarban mangrove wetlands is being developed.  This is gradually being achieved through multiple international collaborations and will provide vital information for the planning and use of land and waterways in the wetlands.

Professor Santosh Sarkar, Department of Marine Science, University of Kolkatta,


Biogeochemistry of mercury and methylmercury in sediment cores from Sundarban mangrove wetland, India - a UNESCO World Heritage Site - Mousumi Chatterjee, João Canário, Santosh Kumar Sarkar, Vasco Branco, Nallamuthu Godhantaraman, Bhaskar Deb Bhattacharya, Asokkumar Bhattacharya  - Environmental Monitoring and Assessment, Springer. DOI:10.1007/s10661-011-2336-8 2011.

Quantification and source identification of polycyclic aromatic hydrocarbons in core sediments from Sundarban Mangrove Wetland, India  - C. Domínguez; S. K. Sarkar, A Bhattacharya, M Chatterjee, B D Bhattacharya, E Jover,  J Albaigés, J M Bayona, Md. A Alam and K K Satpathy. Archives of Environmental Contamination and Toxicology, Springer Publishers, 59(1): 49 - 61, 2010. 

Metal concentrations in water and sediments from tourist beaches of   Acapulco, Mexico  - M.P. Jonathan, P.D. Roy, N. Thangadurai, S. Srinivasalu, P.F. Rodríguez Espinosa, S.K.Sarkar, C. Lakshumanan, M. Navarrete-López and N.P. Muñoz-Sevilla - Marine Pollution Bulletin, Springer, 62, 845-850, 2011.

Baseline of organotin contamination in sediments of Sunderban mangrove wetland and adjacent coastal regions, India - P . Anderson, S K Sarkar, B D Bhattacharya, M Chatterjee, K K Satpathy, T Peshkur and B Antizar-Ladislao. - Ecotoxicology,Springer, 20 (8), 1975-1983, 2011. DOI 10.1007/s10646-011-0739-5.


Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Assessment of the toxicity of silicon nanooxide in relation to various components of the agroecosystem under the conditions of the model experiment 2018-08-18


    Investigation of SiO2 nanoparticles (NPs) effect on Eisenia fetida showed no toxic effect of the metal at a concentration of 250, 500 and 1000 mg per kg of soil, but conversely, a biomass increase from 23.5 to 29.5% (at the protein level decrease from 60 to 80%). The reaction of the earthworm organism fermentative system was expressed in the decrease in the level of superoxide dismutase (SOD) on the 14th day and in the increase in its activity to 27% on the 28th day. The catalase level (CAT) showed low activity at average element concentrations and increase by 39.4% at a dose of 1000 mg/kg. Depression of malonic dialdehyde (MDA) was established at average concentrations of 11.2% and level increase up to 9.1% at a dose of 1000 mg/kg with the prolongation of the effect up to 87.5% after 28-day exposure. The change in the microbiocenosis of the earthworm intestine was manifested by a decrease in the number of ammonifiers (by 42.01–78.9%), as well as in the number of amylolytic microorganisms (by 31.7–65.8%). When the dose of SiO2 NPs increased from 100 to 1000 mg/kg, the number of Azotobacter increased (by 8.2–22.2%), while the number of cellulose-destroying microorganisms decreased to 71.4% at a maximum dose of 1000 mg/kg. The effect of SiO2 NPs on Triticum aestivum L. was noted in the form of a slight suppression of seed germination (no more than 25%), an increase in the length of roots and aerial organs which generally resulted in an increase in plant biomass. Assessing the soil microorganisms’ complex during introduction of metal into the germination medium of Triticum aestivum L., there was noted a decrease in the ammonifiers number (by 4.7–67.6%) with a maximum value at a dose of 1000 mg/kg. The number of microorganisms using mineral nitrogen decreased by 29.5–69.5% with a simultaneous increase in the number at a dose of 50 mg/kg (+ 20%). Depending on NP dose, there was an inhibition of the microscopic fungi development by 18.1–72.7% and an increase in the number of cellulose-destroying microorganisms. For all variants of the experiment, the activity of soil enzymes of the hydrolase and oxidoreductase classes was decreased.

  • Seasonal characteristics of chemical compositions and sources identification of PM 2.5 in Zhuhai, China 2018-08-16


    Fine particulate matter is associated with adverse health effects, but exactly which characteristics of PM2.5 are responsible for this is still widely debated. We evaluated seasonal dynamics of the composition and chemical characteristics of PM2.5 in Zhuhai, China. PM2.5 characteristics at five selected sites within Zhuhai city were analyzed. Sampling began on January 10, 2015, and was conducted for 1 year. The ambient mass concentration, carbon content (organic and elemental carbon, OC and EC), level of inorganic ions, and major chemical composition of PM2.5 were also determined. Average concentrations of PM2.5 were lower than the National Ambient Air Quality Standard (NAAQS) 24-h average of 65 μg/m3. The daily PM2.5 concentration in Zhuhai city exhibited clear seasonal dynamics, with higher daily PM2.5 concentrations in autumn and winter than in spring and summer. Carbon species (OC and EC) and water-soluble ions were the primary components of the PM2.5 fraction of particles. Apart from OC and EC, chemical species in PM2.5 were mainly composed of NH4+ and SO42−. There was a marked difference between the summer and winter periods: the concentrations of OC and EC in winter were roughly 3.4 and 4.0 times than those in summer, while NH4+, SO42−, NO3, and Na+ were 3.2, 4.5, 28.0, and 5.7 times higher in winter than those in summer, respectively. The results of chemical analysis were consistent with three sources dominating PM2.5: coal combustion, biomass burning, and vehicle exhaust; road dust and construction; and from reaction of HCl and HNO3 with NH3 to form NH4Cl and NH4NO3. However, additional work is needed to improve the mass balance and to obtain the source profiles necessary to use these data for source apportionment.

  • Estimates of potential childhood lead exposure from contaminated soil using the USEPA IEUBK model in Melbourne, Australia 2018-08-14


    Soils in inner city areas internationally and in Australia have been contaminated with lead (Pb) primarily from past emissions of Pb in petrol, deteriorating exterior Pb-based paints and from industry. Children can be exposed to Pb in soil dust through ingestion and inhalation leading to elevated blood lead levels (BLLs). Currently, the contribution of soil Pb to the spatial distribution of children’s BLLs is unknown in the Melbourne metropolitan area. In this study, children’s potential BLLs were estimated from surface soil (0–2 cm) samples collected at 250 locations across the Melbourne metropolitan area using the United States Environmental Protection Agency (USEPA) Integrated Exposure Uptake Biokinetic (IEUBK) model. A dataset of 250 surface soil Pb concentrations indicate that soil Pb concentrations are highly variable but are generally elevated in the central and western portions of the Melbourne metropolitan area. The mean, median and geometric soil Pb concentrations were 193, 110 and 108 mg/kg, respectively. Approximately 20 and 4% of the soil samples exceeded the Australian HIL-A residential and HIL-C recreational soil Pb guidelines of 300 and 600 mg/kg, respectively. The IEUBK model predicted a geometric mean BLL of 2.5 ± 2.1 µg/dL (range: 1.3–22.5 µg/dL) in a hypothetical 24-month-old child with BLLs exceeding 5 and 10 µg/dL at 11.6 and 0.8% of the sampling locations, respectively. This study suggests children’s exposure to Pb contaminated surface soil could potentially be associated with low-level BLLs in some locations in the Melbourne metropolitan area.