SEGH Articles

The nano way to cleaner water

04 April 2012
Nanomaterials provide potential for waste water remediation and metal removal and recycling. We envisage that this composite can cheaply and effectively be incorporated into a variety of configurations to improve water treatment.

Decontaminating polluted waste water costs millions but a new discovery by scientists at the University of Brighton could result in huge savings as well as delivering safer, cleaner water. The research, recently published in the journal Angewandte Chemie International Edition, represents a significant shift in our understanding of (nano)chemistry. Mercury is a serious contaminant so this breakthrough could save millions of pounds.

It is generally accepted that when silver is reduced to nano-sized particles, it can only extract a certain amount of mercury. However, Dr Kseniia Katok, working in the Nanoscience and Nanotechnology Group at Brighton, was able to reduce nanoparticles of silver to below 35 nano-metres in diameter (the equivalent of splitting a single human hair into 3,000 separate strands) and found that this allowed almost twice as much mercury to be removed from water.

The team's breakthrough opens the way for more effective, cheaper ways of cleaning mercury-contaminated water. Existing clean-up methods for mercury-contaminated water have either low mercury removal capabilities, leave a large chemical waste footprint or are not energy efficient.

Mercury is found naturally in the environment, but levels of inorganic mercury have increased significantly in recent decades as a result of industrial processes, and mining activities. If mercury contamination occurs, a hugely expensive decontamination process is required, as occurred in Squamish in Canada where the whole of the waterfront was subject to a huge clean-up starting in the 1990s. The seafront town had been subjected to years of industrial pollution because of its forestry industry which began in the early 20th century. Just the chemicals used to clean the water cost around $50,000,000. The Brighton scientists say their research shows that using silver nanoparticles would cost a few thousand rather than tens of millions of pounds for the materials, although a device containing the silver nanoparticles capable of processing large quantities of water would need to be developed.

Dr Raymond Whitby, head of the Nanoscience and Nanotechnology Group, said: "The amount of mercury taken into silver nanoparticles defies our current understanding and promises a number of exciting developments. For example, it should lead to improved water treatment, removing greater quantities of selected heavy metals more quickly and perhaps more cheaply than before."

One key element in Dr Katok's discovery is her use of chemically-modified quartz sand, which reduces silver particles to a nanoscale with a high degree of purity. Sergey Mikhalovsky, the university's Professor of Materials Chemistry and Dr Katok's co-supervisor, said: "This is the biggest difference between our silver and that prepared by other commonly-used methods such as citrate reduction, which typically leaves residual chemical groups on the surface of the silver nanoparticles. These can cause unwanted side reactions that may have limited its effectiveness." He anticipates that modified quartz could be used in other chemical groupings and might, in the future, aid the extraction and recycling of precious metals such as platinum, palladium and gold.

Andy Cundy, the university's Professor of Applied Geochemistry and Dr Katok's lead supervisor, said: "These findings enable a major shift towards the use of nanomaterials for waste water remediation and metal removal and recycling. We envisage that this composite can cheaply and effectively be incorporated into a variety of configurations to improve water treatment, initially targeting mercury, which remains one of the key environmental contaminants globally."

Professor Andy Cundy, University of Brighton. a.cundy@brighton.ac.uk

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Genotoxic effects of PM 10 and PM 2.5 bound metals: metal bioaccessibility, free radical generation, and role of iron 2018-10-09

    Abstract

    The present study was undertaken to examine the possible genotoxicity of ambient particulate matter (PM10 and PM2.5) in Pune city. In both size fractions of PM, Fe was found to be the dominant metal by concentration, contributing 22% and 30% to the total mass of metals in PM10 and PM2.5, respectively. The speciation of soluble Fe in PM10 and PM2.5 was investigated. The average fraction of Fe3+ and Fe2+ concentrations in PM2.5 was 80.6% and 19.3%, respectively, while in PM2.5 this fraction was 71.1% and 29.9%, respectively. The dominance of Fe(III) state in both PM fractions facilitates the generation of hydroxyl radicals (·OH), which can damage deoxyribose nucleic acid (DNA), as was evident from the gel electrophoresis study. The DNA damage by ·OH was supported through the in silico density functional theory (DFT) method. DFT results showed that C8 site of guanine (G)/adenine (A) and C6 site of thymine (T)/cytosine (C) would be energetically more favorable for the attack of hydroxyl radicals, when compared with the C4 and C5 sites. The non-standard Watson–Crick base pairing models of oxidative products of G, A, T and C yield lower-energy conformations than canonical dA:dT and dG:dC base pairing. This study may pave the way to understand the structural consequences of base-mediated oxidative lesions in DNA and its role in human diseases.

  • A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment 2018-10-08

    Abstract

    Airborne particulate matter (PM) that is a heterogeneous mixture of particles with a variety of chemical components and physical features acts as a potential risk to human health. The ability to pose health risk depends upon the size, concentration and chemical composition of the suspended particles. Potential toxic elements (PTEs) associated with PM have multiple sources of origin, and each source has the ability to generate multiple particulate PTEs. In urban areas, automobile, industrial emissions, construction and demolition activities are the major anthropogenic sources of pollution. Fine particles associated with PTEs have the ability to penetrate deep into respiratory system resulting in an increasing range of adverse health effects, at ever-lower concentrations. In-depth investigation of PTEs content and mode of occurrence in PM is important from both environmental and pathological point of view. Considering this air pollution risk, several studies had addressed the issues related to these pollutants in road and street dust, indicating high pollution level than the air quality guidelines. Observed from the literature, particulate PTEs pollution can lead to respiratory symptoms, cardiovascular problems, lungs cancer, reduced lungs function, asthma and severe case mortality. Due to the important role of PM and associated PTEs, detailed knowledge of their impacts on human health is of key importance.

  • Interactions between polycyclic aromatic hydrocarbons and epoxide hydrolase 1 play roles in asthma 2018-10-06

    Abstract

    Asthma, as one of the most common chronic diseases in children and adults, is a consequence of complex gene–environment interactions. Polycyclic aromatic hydrocarbons (PAHs), as a group of widespread environmental organic pollutants, are involved in the development, triggering and pathologic changes of asthma. Various previous studies reported the critical roles of PAHs in immune changes, oxidative stress and environment–gene interactions of asthma. EPHX1 (the gene of epoxide hydrolase 1, an enzyme mediating human PAH metabolism) had a possible association with asthma by influencing PAH metabolism. This review summarized that (1) the roles of PAHs in asthma—work as risk factors; (2) the possible mechanisms involved in PAH-related asthma—through immunologic and oxidative stress changes; (3) the interactions between PAHs and EPHX1 involved in asthma—enzymatic activity of epoxide hydrolase 1, which affected by EPHX1 genotypes/SNPs/diplotypes, could influence human PAH metabolism and people’s vulnerability to PAH exposure. This review provided a better understanding of the above interactions and underlying mechanisms for asthma which help to raise public’s concern on PAH control and develop strategies for individual asthma primary prevention.