SEGH Articles

The new SEGH President: Andrew Hursthouse

08 September 2013
Professor Andrew Hursthouse formally took over the position of President of SEGH in August 2013 following election by the SEGH board.

Professor Andrew Hursthouse takes over from Professor Xiang-dong Li who has served as President of SEGH from 2011.  Andrew has been involved in the SEGH for over 20 years as a member, regional representative of Europe and International Board member.

Professor Andrew Hursthouse is Head of Physical Sciences at the University of the West of Scotland, based in Paisley near Glasgow, Scotland. He obtained a BSc in Geochemistry from the University of Reading followed by a PhD in Environmental Radioactivity from the University of Glasgow. His research interests cover geochemical contributions to assessing the degradation of environmental quality in urban environments, the remediation of soils and sediments and waste management, nutrition and health as well as the link between science and environmental regulation and policy. Professor Hursthouse has published more than 130 peer reviewed journal articles, proceedings and reports for industry and government organizations. He has worked extensively with small and large businesses on environmental management and impact issues. The current focus of his research is on risk assessment in urban agriculture and improving our understanding of geochemical controls in waste regulation for the steel industry.  

We take the opportunity to ask a few questions of Andrew to gain an insight into his experience as an environmental scientist, member of SEGH and his hopes for the future of SEGH.

What are your hopes for the future of SEGH and how do you intend to lead the SEGH forward as the new President?

I hope we can sustain recent growth in interests and membership of the Society, ensuring a regular series of meetings across our regional networks. Some geographical areas have been extremely active, whilst others less so. We have interests from developing as well as strongly growing economies. I intend to work hard to encourage activity in all regions and identify individuals and groups to lead this. During the Presidency of Professor Li, we have already established strong communication structures with our collaborating organisations (IMGA, IAGC) to ensure the International Symposium for Environmental Geochemistry, has a regular and identifiable planning mechanism. Our journal Environmental Geochemistry & Health continues to grow in impact through the efforts of the Editor in Chief Prof Ming Wong, the publisher Springer, and editorial board members. The SEGH Board has a role in ensuring the excellent science undertaken by our members has an opportunity to be presented at high visibility meetings and in our journal, which I intend to promote. Ensuring regular SEGH meetings, encouraging early career researchers to participate and develop their careers with SEGH support must be a central aim of our organisation and the focus of board members.

 

What are the important challenges that face SEGH in the future?

Collaboration between different specialities is at the heart of SEGH and was one of the founding principles of the organisation. Meetings and discussions are enriched by this fact and have provided us with opportunities not often encountered in single discipline groups. The efforts of SEGH members to encourage and sustain this interaction is a key challenge – the contributions from disciplines unquestionably provide a greater understanding of current issues, but also presents some difficulties in sharing understanding in some areas as the scientific language and approach can vary. The role SEGH meetings have in providing a platform for those discussions to take place and collaborations to develop, should not be underestimated. Expanding this activity, across our regional networks, is a key challenge for the future. We need to ensure our organisation has a balanced representation across scientific disciplines as well as strong organisational structures to maintain the frequency of our meetings and opportunities for scientists from all stages in their careers to interact.

 

With the advent of communications technology and increasing globalisation, how do you think SEGH could reach out to the developing countries with limited resources and the emerging economic powerhouses to promote scientific collaboration across boundaries?

We are already doing a lot to encourage this. Our regional meetings have benefited from participation by scientists from developing countries and the organisers of our events have been very supportive in reducing financial burdens and providing access to low cost facilities. Our journal publisher, Springer has put in place schemes to help institutions in developing regions to access journals and SEGH membership offering additional access encourages this to be taken up by individuals. We can offer further support to scientists in these regions, through the SEGH board members. This can, and has included discussions and advice to support the development of regional groups, educational development in higher education institutions and their teaching programmes. To encourage future environmental geochemists and health professionals to engage with SEGH beyond meetings and events we can provide support for the development of robust research programmes and help to identify opportunities for financial support.

 


What do you think are the major scientific issues facing the society’s area of research and how could SEGH take a lead role in these?

As the human population and economies grow, there are considerable pressures on natural resources and with increasing urbanization, human populations are concentrated and their activities often over exploit resources. This leads to increased exposure at both local and regional level, to a range of common pollutants and many new or emerging substances. Environmental geochemistry as a scientific discipline has a key contribution to understanding the impact from chemical substances and with health professionals the consequences for the human population. Future challenges will be in how this rebounds on human behaviour, in light of other drivers, e.g. developing economies and social systems, climate change, which may alter the nature of exposure and affect risk assessments. SEGH must ensure it leads discussions and its meeting organisers encouraged to deal with these topics in session themes and invited keynote speakers. The SEGH board can do a lot to encourage this activity and promote discussion of emerging challenges.


During your scientific career, how has your membership of SEGH benefited you personally? What do you think are the advantages of early – mid – late career scientists joining SEGH?

I have been a supporter of SEGH ever since I participated in my first SEGH conference in the early 1990’s. The meetings have always been lively and broad in content as well as highlighting topical issues. This has helped to encourage me to pursue my research programme, often through difficult financial and organizational periods, where sustaining activities has been a challenge. SEGH has provided external points to help justify my efforts to my peers and mangers. Association with a successful and active scientific organisation has always benefited my career path. My research students have been able to interact with senior scientists and their own peer group. Exchanging experience and finding out about wider scientific community is always a benefit. For early career scientists, it helps to make new contacts and to provide that first step in raising your own research profile. Mid career SEGH offers a chance to find new collaborations, strengthen your research plans and get feedback on your research ideas in a friendly and supportive environment. Those late career scientists will always benefit from engaging with early and mid-career scientists – discussing new ideas as well as offering support to enthusiastic scientists of the future. The SEGH meetings have always provided this – excellent science, good discussion and debate, well organised and new opportunities for your research.

 

Further details will be announced for the regional structure of SEGH.

Interview by Michael Watts

SEGH Webmaster

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Improving arsenopyrite oxidation rate laws: implications for arsenic mobilization during aquifer storage and recovery (ASR) 2018-04-25

    Abstract

    Aquifer storage and recovery (ASR) and aquifer recharge (AR) provide technical solutions to address water supply deficits and growing future water demands. Unfortunately, the mobilization of naturally present arsenic due to ASR/AR operations has undermined its application on a larger scale. Predicting arsenic mobility in the subsurface during ASR/AR is further complicated by site-specific factors, including the arsenic mobilization mechanisms, groundwater flow conditions, and multi-phase geochemical interactions. In order to ensure safe and sustainable ASR/AR operation, a better understanding of these factors is needed. The current study thus aims to better characterize and model arsenic remobilization at ASR/AR sites by compiling and analyzing available kinetic data on arsenic mobilization from arsenopyrite under different aqueous conditions. More robust and widely applicable rate laws are developed for geochemical conditions relevant to ASR/AR. Sensitivity analysis of these new rate laws gives further insight into the controlling geochemical factors for arsenic mobilization. When improved rate laws are incorporated as the inputs for reactive transport modeling, arsenic mobilization in ASR/AR operations can be predicted with an improved accuracy. The outcomes will be used to guide groundwater monitoring and specify ASR/AR operational parameters, including water pretreatment requirements prior to injection.

  • Heavy metal exposure has adverse effects on the growth and development of preschool children 2018-04-25

    Abstract

    The purpose of this study was to investigate the associations between levels of lead (Pb), cadmium (Cd), chromium (Cr), and manganese (Mn) in the PM2.5 and blood and physical growth, and development parameters including birth length and weight, height, weight, body mass index (BMI), head circumference, and chest circumference in preschool children from Guiyu (e-waste exposure area) and Haojiang (the reference area). A total of 470 preschool children from Guiyu and Haojiang located in southeast coast of China were recruited and required to undergo physical examination and blood tests during the study period. Birth length and weight were obtained by birth records and questionnaire. Pb and Cd in both PM2.5 and blood were significantly higher in Guiyu than Haojiang. Remarkably, the children of Guiyu had significantly lower birth weight and length, BMI, and chest circumference when compare to their peers from the reference area (all p value < 0.05). Spearman correlation analyses showed that blood Pb was negatively correlated with height (r = −0.130, p < 0.001), weight (r = −0.169, p < 0.001), BMI (r = −0.100, p < 0.05), head circumference (r = −0.095, p < 0.05), and chest circumference (r = −0.112, p < 0.05). After adjustment for the potential confounders in further linear regression analyses, blood Pb was negatively associated with height (β = −0.066, p < 0.05), weight (β = −0.119, p < 0.001), head circumference (β = −0.123, p < 0.01), and chest circumference (β = −0.104, p < 0.05), respectively. No significant association between blood Cd, Cr, or Mn was found with any of our developmental outcomes. Taken together, lead exposure limits or delays the growth and development of preschool children.

  • Contamination characteristics of trace metals in dust from different levels of roads of a heavily air-polluted city in north China 2018-04-24

    Abstract

    Concentrations of eight trace metals (TMs) in road dust (RD) (particles < 25 μm) from urban areas of Xinxiang, China, were determined by inductively coupled plasma mass spectrometry. The geometric mean concentrations of Zn, Mn, Pb, As, Cu, Cr, Ni and Cd were 489, 350, 114, 101, 60.0, 39.7, 31.6, and 5.1 mg kg−1, respectively. When compared with TM levels in background soil, the samples generally display elevated TM concentrations, except for Cr and Mn, and for Cd the enrichment value was 69.6. Spatial variations indicated TMs in RD from park path would have similar sources with main roads, collector streets and bypasses. Average daily exposure doses of the studied TMs were about three orders of magnitude higher for hand-to-mouth ingestion than dermal contact, and the exposure doses for children were 9.33 times higher than that for adults. The decreasing trend of calculated hazard indexes (HI) for the eight elements was As > Pb > Cr > Mn > Cd > Zn > Ni > Cu for both children and adults.