SEGH Articles

The relationship between heavy metals and sedimentary organic matter in the Oxford Clay (Jurassic) of the southern UK

03 December 2012
Pin Ru is studying for a PhD in sedimentary organic matter and its interaction with waste in landfill sites

Pin Ru is studying for a PhD studies (2009-present) in sedimentary organic matter and its interaction with waste in landfill sites at the University of Southampton in the UK. This is supervised by Prof. John Marshall and Dr. Clive Trueman of the School of Ocean and Earth Sciences and Prof. William Powrie, Dr David Smallman and Dr Anne Stringfellow from the School of Civil Engineering and the Environment. She was a poster winner at the 9th ISEGH meeting in Aveiro, Portugal, July 2012.

The Oxford Clay is an organic rich sediment widely distributed across the southern UK. It has been widely used for brick making and this has led to the many former pits being used as landfill sites. Some of the more modern sites are now specifically excavated for landfill. Although it has excellent retention properties for landfill it occurs above the minor aquifer of the Kellaways Sand. This must not become contaminated. Heavy metals are relatively abundant in the Oxford Clay and the waste water that drains from the landfill sites. It is very important to understand the source of these metals as to their source from either the Oxford Clay or the landfill. It is also important to understand how these metals might interact with the organic matter in the Oxford Clay.

 

This investigation has determined the distribution of organic matter through a cored section of Oxford Clay from a landfill site. Analyses include TOC%(Total organic carbon contain), visual kerogens in transmitted light and the phytoclast component in reflected light. TOC% enables us to determine the boundary between the Oxford Clay and Kellaways Sand. Changes in quartz size and the percentage of clay and quartz confirm this determination. The organic matter found in rock is mainly phytoclasts (vitrinite and semifusinite), pollen and AOM (amorphous organic matter). Point counts shows that AOM dominates all samples. Heavy metals including V, Cr, Co, Cu, Ni, As, Zn were analysed to compare with the organic matter data. Phytoclasts have been regarded as particularly important on account of their presumed interaction with metals from groundwater. In addition to organic petrology the distribution of selected heavy metals through parts of the core and within different organic and mineral fractions of single samples has also been investigated. This variation of different metal ions concentration implies a link between TOC% and AOM percentage.

For clarifying the relationship between heavy metals and various factors, iron content,TOC%, AOM%, Clay% and Pyrite% are measured in order to compare with heavy metals abundance. In the Oxford Clay, copper is richer in the AOM, while Arsenic appears richer in pyrite. Cobalt, Nickel and Chromium have higher contents in the AOM than in pyrite. The zinc concentration fluctuates between pyrite and AOM and may be linked with sphalerite occurrence. More samples are being analyzed to confirm the correlation of heavy metals in the Kellayways Sand.

Pin Ru

University of Southampton, UK

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Agro-ecological suitability assessment of Chinese Medicinal Yam under future climate change 2019-10-15

    Abstract

    Chinese Medicinal Yam (CMY) has been prescribed as medicinal food for thousand years in China by Traditional Chinese Medicine (TCM) practitioners. Its medical benefits include nourishing the stomach and spleen to improve digestion, replenishing lung and kidney, etc., according to the TCM literature. As living standard rises and public health awareness improves in recent years, the potential medicinal benefits of CMY have attracted increasing attention in China. It has been found that the observed climate change in last several decades, together with the change in economic structure, has driven significant shift in the pattern of the traditional CMY planting areas. To identify suitable planting area for CMY in the near future is critical for ensuring the quality and supply quantity of CMY, guiding the layout of CMY industry, and safeguarding the sustainable development of CMY resources for public health. In this study, we first collect 30-year records of CMY varieties and their corresponding phenology and agro-meteorological observations. We then consolidate these data and use them to enrich and update the eco-physiological parameters of CMY in the agro-ecological zone (AEZ) model. The updated CMY varieties and AEZ model are validated using the historical planting area and production under observed climate conditions. After the successful validation, we use the updated AEZ model to simulate the potential yield of CMY and identify the suitable planting regions under future climate projections in China. This study shows that regions with high ecological similarity to the genuine and core producing areas of CMY mainly distribute in eastern Henan, southeastern Hebei, and western Shandong. The climate suitability of these areas will be improved due to global warming in the next 50 years, and therefore, they will continue to be the most suitable CMY planting regions.

  • Application of stable isotopes and dissolved ions for monitoring landfill leachate contamination 2019-10-15

    Abstract

    We evaluated groundwater contamination by landfill leachate at a municipal landfill and characterized isotopic and hydrogeochemical evidence of the degradation and natural attenuation of buried organic matter at the study site. Dissolved ion content was generally much higher in the leachate than in the surrounding groundwater. The leachate was characterized by highly elevated bicarbonate and ammonium levels and a lack of nitrate and sulfate, indicating generation under anoxic conditions. Leachate δD and δ13CDIC values were much higher than those of the surrounding groundwater; some groundwater samples near the landfill showed a significant contamination by the leachate plume. Hydrochemical characteristics of the groundwater suggest that aquifer geology in the study area plays a key role in controlling the natural attenuation of leachate plumes in this oxygen-limited environment.

  • Lead transfer into the vegetation layer growing naturally in a Pb-contaminated site 2019-10-10

    Abstract

    The lead was one of the main elements in the glazes used to colour ceramic tiles. Due to its presence, ceramic sludge has been a source of environmental pollution since this dangerous waste has been often spread into the soil without any measures of pollution control. These contaminated sites are often located close to industrial sites in the peri-urban areas, thus representing a considerable hazard to the human and ecosystem health. In this study, we investigated the lead transfer into the vegetation layer (Phragmites australis, Salix alba and Sambucus nigra) growing naturally along a Pb-contaminated ditch bank. The analysis showed a different lead accumulation among the species and their plant tissues. Salix trees were not affected by the Pb contamination, possibly because their roots mainly develop below the contaminated deposit. Differently, Sambucus accumulated high concentrations of lead in all plant tissues and fruits, representing a potential source of biomagnification. Phragmites accumulated large amounts of lead in the rhizomes and, considering its homogeneous distribution on the site, was used to map the contamination. Analysing the Pb concentration within plant tissues, we got at the same time information about the spread, the history of the contamination and the relative risks. Finally, we discussed the role of natural recolonizing plants for the soil pollution mitigation and their capacity on decreasing soil erosion and water run-off.