SEGH Articles

The relationship between heavy metals and sedimentary organic matter in the Oxford Clay (Jurassic) of the southern UK

03 December 2012
Pin Ru is studying for a PhD in sedimentary organic matter and its interaction with waste in landfill sites

Pin Ru is studying for a PhD studies (2009-present) in sedimentary organic matter and its interaction with waste in landfill sites at the University of Southampton in the UK. This is supervised by Prof. John Marshall and Dr. Clive Trueman of the School of Ocean and Earth Sciences and Prof. William Powrie, Dr David Smallman and Dr Anne Stringfellow from the School of Civil Engineering and the Environment. She was a poster winner at the 9th ISEGH meeting in Aveiro, Portugal, July 2012.

The Oxford Clay is an organic rich sediment widely distributed across the southern UK. It has been widely used for brick making and this has led to the many former pits being used as landfill sites. Some of the more modern sites are now specifically excavated for landfill. Although it has excellent retention properties for landfill it occurs above the minor aquifer of the Kellaways Sand. This must not become contaminated. Heavy metals are relatively abundant in the Oxford Clay and the waste water that drains from the landfill sites. It is very important to understand the source of these metals as to their source from either the Oxford Clay or the landfill. It is also important to understand how these metals might interact with the organic matter in the Oxford Clay.

 

This investigation has determined the distribution of organic matter through a cored section of Oxford Clay from a landfill site. Analyses include TOC%(Total organic carbon contain), visual kerogens in transmitted light and the phytoclast component in reflected light. TOC% enables us to determine the boundary between the Oxford Clay and Kellaways Sand. Changes in quartz size and the percentage of clay and quartz confirm this determination. The organic matter found in rock is mainly phytoclasts (vitrinite and semifusinite), pollen and AOM (amorphous organic matter). Point counts shows that AOM dominates all samples. Heavy metals including V, Cr, Co, Cu, Ni, As, Zn were analysed to compare with the organic matter data. Phytoclasts have been regarded as particularly important on account of their presumed interaction with metals from groundwater. In addition to organic petrology the distribution of selected heavy metals through parts of the core and within different organic and mineral fractions of single samples has also been investigated. This variation of different metal ions concentration implies a link between TOC% and AOM percentage.

For clarifying the relationship between heavy metals and various factors, iron content,TOC%, AOM%, Clay% and Pyrite% are measured in order to compare with heavy metals abundance. In the Oxford Clay, copper is richer in the AOM, while Arsenic appears richer in pyrite. Cobalt, Nickel and Chromium have higher contents in the AOM than in pyrite. The zinc concentration fluctuates between pyrite and AOM and may be linked with sphalerite occurrence. More samples are being analyzed to confirm the correlation of heavy metals in the Kellayways Sand.

Pin Ru

University of Southampton, UK

Keep up to date

SEGH Events

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Assessment of the toxicity of silicon nanooxide in relation to various components of the agroecosystem under the conditions of the model experiment 2018-08-18

    Abstract

    Investigation of SiO2 nanoparticles (NPs) effect on Eisenia fetida showed no toxic effect of the metal at a concentration of 250, 500 and 1000 mg per kg of soil, but conversely, a biomass increase from 23.5 to 29.5% (at the protein level decrease from 60 to 80%). The reaction of the earthworm organism fermentative system was expressed in the decrease in the level of superoxide dismutase (SOD) on the 14th day and in the increase in its activity to 27% on the 28th day. The catalase level (CAT) showed low activity at average element concentrations and increase by 39.4% at a dose of 1000 mg/kg. Depression of malonic dialdehyde (MDA) was established at average concentrations of 11.2% and level increase up to 9.1% at a dose of 1000 mg/kg with the prolongation of the effect up to 87.5% after 28-day exposure. The change in the microbiocenosis of the earthworm intestine was manifested by a decrease in the number of ammonifiers (by 42.01–78.9%), as well as in the number of amylolytic microorganisms (by 31.7–65.8%). When the dose of SiO2 NPs increased from 100 to 1000 mg/kg, the number of Azotobacter increased (by 8.2–22.2%), while the number of cellulose-destroying microorganisms decreased to 71.4% at a maximum dose of 1000 mg/kg. The effect of SiO2 NPs on Triticum aestivum L. was noted in the form of a slight suppression of seed germination (no more than 25%), an increase in the length of roots and aerial organs which generally resulted in an increase in plant biomass. Assessing the soil microorganisms’ complex during introduction of metal into the germination medium of Triticum aestivum L., there was noted a decrease in the ammonifiers number (by 4.7–67.6%) with a maximum value at a dose of 1000 mg/kg. The number of microorganisms using mineral nitrogen decreased by 29.5–69.5% with a simultaneous increase in the number at a dose of 50 mg/kg (+ 20%). Depending on NP dose, there was an inhibition of the microscopic fungi development by 18.1–72.7% and an increase in the number of cellulose-destroying microorganisms. For all variants of the experiment, the activity of soil enzymes of the hydrolase and oxidoreductase classes was decreased.

  • Seasonal characteristics of chemical compositions and sources identification of PM 2.5 in Zhuhai, China 2018-08-16

    Abstract

    Fine particulate matter is associated with adverse health effects, but exactly which characteristics of PM2.5 are responsible for this is still widely debated. We evaluated seasonal dynamics of the composition and chemical characteristics of PM2.5 in Zhuhai, China. PM2.5 characteristics at five selected sites within Zhuhai city were analyzed. Sampling began on January 10, 2015, and was conducted for 1 year. The ambient mass concentration, carbon content (organic and elemental carbon, OC and EC), level of inorganic ions, and major chemical composition of PM2.5 were also determined. Average concentrations of PM2.5 were lower than the National Ambient Air Quality Standard (NAAQS) 24-h average of 65 μg/m3. The daily PM2.5 concentration in Zhuhai city exhibited clear seasonal dynamics, with higher daily PM2.5 concentrations in autumn and winter than in spring and summer. Carbon species (OC and EC) and water-soluble ions were the primary components of the PM2.5 fraction of particles. Apart from OC and EC, chemical species in PM2.5 were mainly composed of NH4+ and SO42−. There was a marked difference between the summer and winter periods: the concentrations of OC and EC in winter were roughly 3.4 and 4.0 times than those in summer, while NH4+, SO42−, NO3, and Na+ were 3.2, 4.5, 28.0, and 5.7 times higher in winter than those in summer, respectively. The results of chemical analysis were consistent with three sources dominating PM2.5: coal combustion, biomass burning, and vehicle exhaust; road dust and construction; and from reaction of HCl and HNO3 with NH3 to form NH4Cl and NH4NO3. However, additional work is needed to improve the mass balance and to obtain the source profiles necessary to use these data for source apportionment.

  • Estimates of potential childhood lead exposure from contaminated soil using the USEPA IEUBK model in Melbourne, Australia 2018-08-14

    Abstract

    Soils in inner city areas internationally and in Australia have been contaminated with lead (Pb) primarily from past emissions of Pb in petrol, deteriorating exterior Pb-based paints and from industry. Children can be exposed to Pb in soil dust through ingestion and inhalation leading to elevated blood lead levels (BLLs). Currently, the contribution of soil Pb to the spatial distribution of children’s BLLs is unknown in the Melbourne metropolitan area. In this study, children’s potential BLLs were estimated from surface soil (0–2 cm) samples collected at 250 locations across the Melbourne metropolitan area using the United States Environmental Protection Agency (USEPA) Integrated Exposure Uptake Biokinetic (IEUBK) model. A dataset of 250 surface soil Pb concentrations indicate that soil Pb concentrations are highly variable but are generally elevated in the central and western portions of the Melbourne metropolitan area. The mean, median and geometric soil Pb concentrations were 193, 110 and 108 mg/kg, respectively. Approximately 20 and 4% of the soil samples exceeded the Australian HIL-A residential and HIL-C recreational soil Pb guidelines of 300 and 600 mg/kg, respectively. The IEUBK model predicted a geometric mean BLL of 2.5 ± 2.1 µg/dL (range: 1.3–22.5 µg/dL) in a hypothetical 24-month-old child with BLLs exceeding 5 and 10 µg/dL at 11.6 and 0.8% of the sampling locations, respectively. This study suggests children’s exposure to Pb contaminated surface soil could potentially be associated with low-level BLLs in some locations in the Melbourne metropolitan area.