SEGH Articles

Trace Metal inputs in French Pyrenees: a spatial and temporal case study in the Upper valley of the Vicdessos

02 May 2013
A human-environment observatory aims to monitor the evolution of human-environment interactions within the Upper Vicdessos valley. The aim is to collect data and integrate them to conduct a transdisciplinary research in a changing environment.

 

The following article comes from the Ecolab – members of the organising team for this year’s International SEGH meeting in Europe. The venue in Toulouse, Southern France promises and exciting and informative series of oral and poster presentations in stunning surroundings in the centre of the city.”

Trace Metals (e.g. Pb, Hg, Cu) are metallic chemical elements in small amounts in natural rocks and soils. However human activities have impacted their biogeochemical cycles through local and global dispersions throughout the world since the beginning of the metallurgy more than 5000 years ago. As some of these trace metals are known to be harmful and can be accumulated in natural environments, it is important to understand the present trace metal inventories in soil.

Our study takes place in the upper valley of Vicdessos (Ariège). This is a mountain catchment situated in the French Pyrenees up to 2600 m above see level. As several places in the whole Pyrenees range, human pressure, variable in time and space, have impacted on the surrounding environment. To be more precise mining and smelting activities (Iron, Ag-Pb Galena), intensive agro-pastoral activities, deforestation are documented for this area at least since the early Middle Ages. These activities have been dispersed metals and contributed to the current contamination of soil, leaving here a chemical legacy. We focus our study on Bassiès valley (photo 1) which is a sub-catchment of the upper-Vicdessos Valley (Cf. map 1). The geomorphological shape of the valley results of glacial erosion of the Bassiès monzogranite basement during the last glacial era. Several lakes and mires are formed in this succession of glacial basins and tills. Since 2009, a human-environment observatory (http://w3.ohmpyr.univ-tlse2.fr/) aims to monitor the evolution of human - environment interactions within this geographic zone. Different projects, from botanical research to economic studies through biogeochemistry, are carried out in this context. The aim is to collect data and integrate them to conduct a transdisciplinary research in changing environment.

This PhD project is involved in such context. The idea is to decipher the different natural and anthropogenic factors influencing trace metals flows and accumulation in the catchment, main objectives are to:

  • Understand when and how trace metals inputs occurred in the past, and the relationship with contemporaneous environment (e.g. land use, mining, smelting, etc.)
  • Highlight temporal variability and origin of present atmospheric trace metals inputs
  • Estimate present inventories and the possible release in the case of environmental changes.

 

To answer these questions, we aim to set up a spatio-temporal approach using environmental archives and atmospheric deposition monitoring. Several cores of environmental archives (Peat, Lakes...) will be analysed to reconstruct past deposition of trace metals on Bassiès catchment (Photo 3). These results should be compared with other studies (palynology, charcoal) and historical data to discuss their possible relationships and influence of changes in environmental pressure on trace metals inputs. Multi-coring will be applied on the Bassiès site to see intra-variability and a Pyrenean coring transect to discuss spatial variability in the last 200 years. Temporal dynamic of actual trace metal deposition is assessed by means of atmospheric deposition clean collectors (Photo 4) along altitudinal transects and soil solution collectors. We will install passive fog collectors designed to ultra-trace metal occult deposition. Special insight will be the study of lead isotopic composition in deposition, cores and surface mosses transects for better understanding of lead sources.

This PhD project is led by Adrien CLAUSTRES in the EcoLab, a laboratory of functional ecology and environment at the University of Toulouse, France. This project is directed by Gaël LE ROUX and Anne PROBST, CNRS researchers also at EcoLab. (http://www.ecolab.omp.eu/).

Adrien Claustres, EcoLab, University of Toulouse, France

adrien.claustres@free.fr

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Spatial variability and geochemistry of rare earth elements in soils from the largest uranium–phosphate deposit of Brazil 2018-02-22

    Abstract

    The Itataia uranium–phosphate deposit is the largest uranium reserve in Brazil. Rare earth elements (REEs) are commonly associated with phosphate deposits; however, there are no studies on the concentrations of REEs in soils of the Itataia deposit region. Thus, the objective of the research was to evaluate the concentration and spatial variability of REEs in topsoils of Itataia phosphate deposit region. In addition, the influence of soil properties on the geochemistry of REEs was investigated. Results showed that relatively high mean concentrations (mg kg−1) of heavy REEs (Gd 6.01; Tb 1.25; Ho 1.15; Er 4.05; Tm 0.64; Yb 4.61; Lu 0.65) were found in surface soils samples. Soil properties showed weak influence on the geochemical behavior of REEs in soils, except for the clay content. On the other hand, parent material characteristics, such as P and U, had strong influence on REEs concentrations. Spatial distribution patterns of REEs in soils are clearly associated with P and U contents. Therefore, geochemical surveys aiming at the delineation of ore-bearing zones in the region can benefit from our data. The results of this work reinforce the perspective for co-mining of P, U and REEs in this important P–U reserve.

  • 2017 Outstanding Reviewers 2018-02-21
  • Seasonal occurrence, source evaluation and ecological risk assessment of polycyclic aromatic hydrocarbons in industrial and agricultural effluents discharged in Wadi El Bey (Tunisia) 2018-02-13

    Abstract

    Polycyclic aromatic hydrocarbons are of great concern due to their persistence, bioaccumulation and toxic properties. The occurrence, source and ecological risk assessment of 26 polycyclic aromatic hydrocarbons in industrial and agricultural effluents affecting the Wadi El Bey watershed were investigated by means of gas chromatographic/mass spectrometric analysis (GC/MS). Total PAHs (∑ 26 PAH) ranged from 1.21 to 91.7 µg/L. The 4- and 5-ring compounds were the principal PAHs detected in most of 5 sites examined. Diagnostic concentration ratios and molecular indices were performed to identify the PAH sources. Results show that PAHs could originate from petrogenic, pyrolytic and mixed sources. According to the ecotoxicological assessment, the potential risk associated with PAHs affecting agricultural and industrial effluents ranged from moderate to high for both aquatic ecosystem and human health. The toxic equivalency factor (TEF) approach indicated that benzo[a]pyrene and benz[a]anthracene were the principal responsible for carcinogenic power of samples.