SEGH Articles

Trace Metal inputs in French Pyrenees: a spatial and temporal case study in the Upper valley of the Vicdessos

02 May 2013
A human-environment observatory aims to monitor the evolution of human-environment interactions within the Upper Vicdessos valley. The aim is to collect data and integrate them to conduct a transdisciplinary research in a changing environment.

 

The following article comes from the Ecolab – members of the organising team for this year’s International SEGH meeting in Europe. The venue in Toulouse, Southern France promises and exciting and informative series of oral and poster presentations in stunning surroundings in the centre of the city.”

Trace Metals (e.g. Pb, Hg, Cu) are metallic chemical elements in small amounts in natural rocks and soils. However human activities have impacted their biogeochemical cycles through local and global dispersions throughout the world since the beginning of the metallurgy more than 5000 years ago. As some of these trace metals are known to be harmful and can be accumulated in natural environments, it is important to understand the present trace metal inventories in soil.

Our study takes place in the upper valley of Vicdessos (Ariège). This is a mountain catchment situated in the French Pyrenees up to 2600 m above see level. As several places in the whole Pyrenees range, human pressure, variable in time and space, have impacted on the surrounding environment. To be more precise mining and smelting activities (Iron, Ag-Pb Galena), intensive agro-pastoral activities, deforestation are documented for this area at least since the early Middle Ages. These activities have been dispersed metals and contributed to the current contamination of soil, leaving here a chemical legacy. We focus our study on Bassiès valley (photo 1) which is a sub-catchment of the upper-Vicdessos Valley (Cf. map 1). The geomorphological shape of the valley results of glacial erosion of the Bassiès monzogranite basement during the last glacial era. Several lakes and mires are formed in this succession of glacial basins and tills. Since 2009, a human-environment observatory (http://w3.ohmpyr.univ-tlse2.fr/) aims to monitor the evolution of human - environment interactions within this geographic zone. Different projects, from botanical research to economic studies through biogeochemistry, are carried out in this context. The aim is to collect data and integrate them to conduct a transdisciplinary research in changing environment.

This PhD project is involved in such context. The idea is to decipher the different natural and anthropogenic factors influencing trace metals flows and accumulation in the catchment, main objectives are to:

  • Understand when and how trace metals inputs occurred in the past, and the relationship with contemporaneous environment (e.g. land use, mining, smelting, etc.)
  • Highlight temporal variability and origin of present atmospheric trace metals inputs
  • Estimate present inventories and the possible release in the case of environmental changes.

 

To answer these questions, we aim to set up a spatio-temporal approach using environmental archives and atmospheric deposition monitoring. Several cores of environmental archives (Peat, Lakes...) will be analysed to reconstruct past deposition of trace metals on Bassiès catchment (Photo 3). These results should be compared with other studies (palynology, charcoal) and historical data to discuss their possible relationships and influence of changes in environmental pressure on trace metals inputs. Multi-coring will be applied on the Bassiès site to see intra-variability and a Pyrenean coring transect to discuss spatial variability in the last 200 years. Temporal dynamic of actual trace metal deposition is assessed by means of atmospheric deposition clean collectors (Photo 4) along altitudinal transects and soil solution collectors. We will install passive fog collectors designed to ultra-trace metal occult deposition. Special insight will be the study of lead isotopic composition in deposition, cores and surface mosses transects for better understanding of lead sources.

This PhD project is led by Adrien CLAUSTRES in the EcoLab, a laboratory of functional ecology and environment at the University of Toulouse, France. This project is directed by Gaël LE ROUX and Anne PROBST, CNRS researchers also at EcoLab. (http://www.ecolab.omp.eu/).

Adrien Claustres, EcoLab, University of Toulouse, France

adrien.claustres@free.fr

Keep up to date

Submit Content

Members can keep in touch with their colleagues through short news and events articles of interest to the SEGH community.

Science in the News

Latest on-line papers from the SEGH journal: Environmental Geochemistry and Health

  • Ecological impact of the antibiotic ciprofloxacin on microbial community of aerobic activated sludge 2019-08-16

    Abstract

    This study investigated the effects and fate of the antibiotic ciprofloxacin (CIP) at environmentally relevant levels (50–500 µg/L) in activated sludge (AS) microbial communities under aerobic conditions. Exposure to 500 µg/L of CIP decreased species diversity by about 20% and significantly altered the phylogenetic structure of AS communities compared to those of control communities (no CIP exposure), while there were no significant changes upon exposure to 50 µg/L of CIP. Analysis of community composition revealed that exposure to 500 µg/L of CIP significantly reduced the relative abundance of Rhodobacteraceae and Nakamurellaceae by more than tenfold. These species frequently occur in AS communities across many full-scale wastewater treatment plants and are involved in key ecosystem functions (i.e., organic matter and nitrogen removal). Our analyses showed that 50–500 µg/L CIP was poorly removed in AS (about 20% removal), implying that the majority of CIP from AS processes may be released with either their effluents or waste sludge. We therefore strongly recommend further research on CIP residuals and/or post-treatment processes (e.g., anaerobic digestion) for waste streams that may cause ecological risks in receiving water bodies.

  • Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: a high density sampling survey in the Parauapebas basin, Brazilian Amazon 2019-08-10

    Abstract

    A high-density regional-scale soil geochemical survey comprising 727 samples (one sample per each 5 × 5 km grid) was carried out in the Parauapebas sub-basin of the Brazilian Amazonia, under the Itacaiúnas Basin Geochemical Mapping and Background Project. Samples were taken from two depths at each site: surface soil, 0–20 cm and deep soil, 30–50 cm. The ground and sieved (< 75 µm) fraction was digested using aqua regia and analyzed for 51 elements by inductively coupled plasma mass spectrometry (ICPMS). All data were used here, but the principal focus was on the potential toxic elements (PTEs) and Fe and Mn to evaluate the spatial distribution patterns and to establish their geochemical background concentrations in soils. Geochemical maps as well as principal component analysis (PCA) show that the distribution patterns of the elements are very similar between surface and deep soils. The PCA, applied on clr-transformed data, identified four major associations: Fe–Ti–V–Sc–Cu–Cr–Ni (Gp-1); Zr–Hf–U–Nb–Th–Al–P–Mo–Ga (Gp-2); K–Na–Ca–Mg–Ba–Rb–Sr (Gp-3); and La–Ce–Co–Mn–Y–Zn–Cd (Gp-4). Moreover, the distribution patterns of elements varied significantly among the three major geological domains. The whole data indicate a strong imprint of local geological setting in the geochemical associations and point to a dominant geogenic origin for the analyzed elements. Copper and Fe in Gp-1 were enriched in the Carajás basin and are associated with metavolcanic rocks and banded-iron formations, respectively. However, the spatial distribution of Cu is also highly influenced by two hydrothermal mineralized copper belts. Ni–Cr in Gp-1 are highly correlated and spatially associated with mafic and ultramafic units. The Gp-2 is partially composed of high field strength elements (Zr, Hf, Nb, U, Th) that could be linked to occurrences of A-type Neoarchean granites. The Gp-3 elements are mobile elements which are commonly found in feldspars and other rock-forming minerals being liberated by chemical weathering. The background threshold values (BTV) were estimated separately for surface and deep soils using different methods. The ‘75th percentile’, which commonly used for the estimation of the quality reference values (QRVs) following the Brazilian regulation, gave more restrictive or conservative (low) BTVs, while the ‘MMAD’ was more realistic to define high BTVs that can better represent the so-called mineralized/normal background. Compared with CONAMA Resolution (No. 420/2009), the conservative BTVs of most of the toxic elements were below the prevention limits (PV), except Cu, but when the high BTVs are considered, Cu, Co, Cr and Ni exceeded the PV limits. The degree of contamination (Cdeg), based on the conservative BTVs, indicates low contamination, except in the Carajás basin, which shows many anomalies and had high contamination mainly from Cu, Cr and Ni, but this is similar between surface and deep soils indicating that the observed high anomalies are strictly related to geogenic control. This is supported when the Cdeg is calculated using the high BTVs, which indicates low contamination. This suggests that the use of only conservative BTVs for the entire region might overestimate the significance of anthropogenic contamination; thus, we suggest the use of high BTVs for effective assessment of soil contamination in this region. The methodology and results of this study may help developing strategies for geochemical mapping in other Carajás soils or in other Amazonian soils with similar characteristics.

  • Uptake of Cd, Pb, and Ni by Origanum syriacum produced in Lebanon 2019-08-06

    Abstract

    Trace metals are found naturally in soil. However, the increase in industrial and agricultural polluting activities has increased trace metal contamination and raised high concerns in the public health sector. The study was conducted on Origanum syriacum, one of the most consumed herbs in the Middle East, and was divided into three parts. (1) Pot experiment: to study the effect of Cd, Pb, or Ni levels in soil on their uptake by O. syriacum. (2) Field samples: collected from major agricultural regions in Lebanon to analyze Cd, Pb, and Ni concentrations in soil and leaves. (3) Sale outlets samples: to measure the levels of Cd, Pb, and Ni in O. syriacum tissues in the market. Results showed that there was a positive correlation between levels of Cd, Pb, and Ni in soil and those in O. syriacum tissues. None of the field samples contained Pb or Ni that exceeded the maximum allowable limits (MAL). Three samples collected from heavily poultry-manured soil contained Cd higher than the MAL. Samples collected from sale outlets did not exceed the MAL for Ni but two exceeded the MAL for Cd and one for Pb. Trace metal contamination is not a major concern in O. syriacum produced in Lebanon. Only one mixture sample from a sale outlet was higher in Pb than the MAL and three samples from heavily manured fields exceeded the MAL for Cd.